0000000000699828

AUTHOR

M. Marta

showing 10 related works from this author

First determination of β-delayed multiple neutron emission beyond A = 100 through direct neutron measurement : The P2n value of 136Sb

2018

Background: β-delayed multiple neutron emission has been observed for some nuclei with A≤100, being the Rb100 the heaviest β2n emitter measured to date. So far, only 25P2n values have been determined for the ≈300 nuclei that may decay in this way. Accordingly, it is of interest to measure P2n values for the other possible multiple neutron emitters throughout the chart of the nuclides. It is of particular interest to make such a measurement for nuclei with A>100 to test the predictions of theoretical models and simulation tools for the decays of heavy nuclei in the region of very neutron-rich nuclei. In addition, the decay properties of these nuclei are fundamental for the understanding of a…

astrofysiikkaNuclear Theorynuclear astrophysicsr processbeta decayNuclear Experimentydinfysiikkanuclear engineeringnuclear structure and decaysisotope separation and enrichmentneutron physicsemissio (fysiikka)
researchProduct

Study of doubly strange systems using stored antiprotons

2016

Bound nuclear systems with two units of strangeness are still poorly known despite their importance for many strong interaction phenomena. Stored antiprotons beams in the GeV range represent an unparalleled factory for various hyperon-antihyperon pairs. Their outstanding large production probability in antiproton collisions will open the floodgates for a series of new studies of systems which contain two or even more units of strangeness at the PANDA experiment at FAIR. For the first time, high resolution gamma-spectroscopy of doubly strange Lambda Lambda-hypernuclei will be performed, thus complementing measurements of ground state decays of Lambda Lambda-hypernuclei at J-PARC or possible …

Particle physicsNuclear and High Energy PhysicsCOLLISIONSStrong interactionNuclear TheoryhyperatomsAntiprotons; Hyperatoms; Hypernuclei; Strangeness; Nuclear and High Energy PhysicsEXCHANGE CURRENTSAntiprotonsStrangeness01 natural sciencesPartícules (Física nuclear)NONuclear physicsSubatomär fysikHypemucleistrangenessDECUPLET BARYONSELECTRIC QUADRUPOLE-MOMENTSHyperatoms0103 physical sciencesSubatomic PhysicsHypernuclei010306 general physicsNuclear ExperimentPhysicshypernucleiNUCLEI010308 nuclear & particles physicsHyperonStrangenessTransport theoryDOUBLE-LAMBDA-HYPERNUCLEIMODELOMEGAAntiprotonPhysics::Accelerator PhysicsHeavy ionHigh Energy Physics::ExperimentantiprotonsINTERMEDIATE ENERGIESEMULSIONNuclear Physics A
researchProduct

β -decay half-lives and β -delayed neutron emission probabilities for several isotopes of Au, Hg, Tl, Pb, and Bi, beyond N=126

2017

Background: Previous measurements of Beta-delayed neutron emitters comprise around 230 nuclei, spanning from the 8He up to 150La. Apart from 210Tl, with a minuscule branching ratio of 0.07%, no other neutron emitter is measured yet beyond A = 150. Therefore new data are needed, particularly in the heavy mass region around N=126, in order to guide theoretical models and to understand the formation of the third r-process peak at A 195. Purpose: To measure both, Beta-decay half-lives and neutron branching ratios of several neutron-rich Au, Hg, Tl, Pb and Bi isotopes beyond N = 126. Method: Ions of interest are produced by fragmentation of a 238U beam, selected and identifed via the GSI-FRS fra…

PhysicsIsotope010308 nuclear & particles physicsBranching fraction01 natural sciences7. Clean energyIon0103 physical sciencesNeutron detectionr-processNeutronAtomic physics010306 general physicss-processDelayed neutronPhysical Review C
researchProduct

β-delayed neutron emission measurements around the third r-process abundance peak

2013

This contribution summarizes an experiment performed at GSI (Germany) in the neutron-rich region beyond N=126. The aim of this measurement is to provide the nuclear physics input of relevance for r-process model calculations, aiming at a better understanding of the third r-process abundance peak. Many exotic nuclei were measured around 211Hg and 215Tl. Final ion identification diagrams are given in this contribution. For most of them, we expect to derive halflives and and β-delayed neutron emission probabilities. The detectors used in this experiment were the Silicon IMplantation and Beta Absorber (SIMBA) detector, based on an array of highly segmented silicon detectors, and the BEta deLayE…

PhysicsNuclear physicsPhysics::Instrumentation and DetectorsNucleosynthesisNeutron emissionDouble beta decayDetectorr-processNuclear ExperimentDelayed neutronAbundance of the chemical elementsIon
researchProduct

β-decay and β-delayed Neutron Emission Measurements at GSI-FRS Beyond N=126, for r-process Nucleosynthesis

2014

New measurements of very exotic nuclei in the neutron-rich region beyond N=126 have been performed at the GSI facility with the fragment separator (FRS). The aim of the experiment is to determine half-lives and β-delayed neutron emission branching ratios of isotopes of Hg, Tl and Pb in this region. This contribution summarizes final counting statistics for identification and for implantation, as well as the present status of the data analysis of the half-lives. In summary, isotopes of Pt, Au, Hg, Tl, Pb, Bi, Po, At, Rn and Fr were clearly identified and several of them (208-211Hg, 211-215Tl, 214-218Pb) were implanted with enough statistics to determine their half-lives. About half of them a…

PhysicsNuclear and High Energy PhysicsIsotope010308 nuclear & particles physicsNeutron emissionBranching fraction01 natural sciencesNuclear physicsNucleosynthesis0103 physical sciencesr-processNeutron010306 general physicss-processDelayed neutronNuclear Data Sheets
researchProduct

New accurate measurements of neutron emission probabilities for relevant fission products

2017

We have performed new accurate measurements of the beta-delayed neutron emission probability for ten isotopes of the elements Y, Sb, Te and I. These are fission products that either have a significant contribution to the fraction of delayed neutrons in reactors or are relatively close to the path of the astrophysical r process. The measurements were performed with isotopically pure radioactive beams using a constant and high efficiency neutron counter and a low noise beta detector. Preliminary results are presented for six of the isotopes and compared with previous measurements and theoretical calculations. peerReviewed

Neutron emissionQC1-999Nuclear physicsNeutronAstrophysics7. Clean energy01 natural sciencesNuclear physics0103 physical sciencesNeutron010306 general physicsNuclear Experimentastro nuclear physicsPhysicsNeutrons:Energies::Energia nuclear [Àrees temàtiques de la UPC]Fission productsPnta114Isotope:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsDetectorBeta (plasma physics)r-processFísica nuclearDelayed neutronNeutron emission
researchProduct

First Measurement of Severalβ-Delayed Neutron Emitting Isotopes BeyondN=126

2016

The β-delayed neutron emission probabilities of neutron rich Hg and Tl nuclei have been measured together with β-decay half-lives for 20 isotopes of Au, Hg, Tl, Pb, and Bi in the mass region N≳126. These are the heaviest species where neutron emission has been observed so far. These measurements provide key information to evaluate the performance of nuclear microscopic and phenomenological models in reproducing the high-energy part of the β-decay strength distribution. This provides important constraints on global theoretical models currently used in r-process nucleosynthesis.

PhysicsIsotope010308 nuclear & particles physicsNeutron emissionAstrophysics::High Energy Astrophysical PhenomenaNuclear TheoryGeneral Physics and Astronomy01 natural sciencesMass formulaNuclear physics13. Climate actionNucleosynthesis0103 physical sciencesr-processNeutronNuclear Experiment010306 general physicss-processDelayed neutronPhysical Review Letters
researchProduct

Measurement of the heaviest Beta-delayed 2-neutron emitter: 136Sb

2017

The Beta-delayed neutron emission probability, Pn , of very exotic nuclei is crucial for the understanding of nuclear structure properties of many isotopes and astrophysical processes such as the rapid neutron capture process (r-process). In addition Beta-delayed neutrons are important in a nuclear power reactor operated in a prompt sub-critical, delayed critical condition, as they contribute to the decay heat inducing fission reactions after a shut down. The study of neutron-rich isotopes and the measurement of Beta-delayed one-neutron emitters (Beta1n) is possible thanks to the Rare Isotope Beam (RIB) facilities, where radioactive beams allow the production of exotic nuclei of interest, w…

FissionNeutron emissionQC1-999Astrophysics::High Energy Astrophysical PhenomenaNuclear TheoryNuclear physicsNeutronAstrophysics7. Clean energy01 natural sciencesNuclear physicsEmission0103 physical sciencesNeutronDecay heat010306 general physicsNuclear Experimentastro nuclear physicsPhysics:Energies::Energia nuclear [Àrees temàtiques de la UPC]NeutronsPnIsotopeta114:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsBranching fractionPhysicsNeutron capture13. Climate actionr-processPhysics::Accelerator PhysicsFísica nuclearAtomic physics
researchProduct

Meta-analysis of mismatch repair polymorphisms within the cogent consortium for colorectal cancer susceptibility

2013

In the last four years, Genome-Wide Association Studies (GWAS) have identified sixteen low-penetrance polymorphisms on fourteen different loci associated with colorectal cancer (CRC). Due to the low risks conferred by known common variants, most of the 35% broad-sense heritability estimated by twin studies remains unexplained. Recently our group performed a case-control study for eight Single Nucleotide Polymorphisms (SNPs) in 4 CRC genes. The present investigation is a followup of that study. We have genotyped six SNPs that showed a positive association and carried out a meta-analysis based on eight additional studies comprising in total more than 8000 cases and 6000 controls. The estimate…

Linkage disequilibriumGenotypeReparació de l'ADNlcsh:MedicineDNA repairGenome-wide association studySingle-nucleotide polymorphismBiologyGenetic polymorphismsDNA Mismatch RepairPolymorphism Single NucleotideDNA Glycosylases03 medical and health sciences0302 clinical medicineMUTYHCàncer colorectalHumansGenetic Predisposition to Diseaselcsh:ScienceGenetic Association Studies030304 developmental biologyGenetic associationGenetics0303 health sciencesMultidisciplinaryGenetic heterogeneityPolimorfisme genèticlcsh:RCase-control studyOdds ratioColorectal cancer3. Good health030220 oncology & carcinogenesisCase-Control Studieslcsh:QColorectal NeoplasmsResearch Article
researchProduct

First evidence of multiple β-delayed neutron emission for isotopes with a > 100

2017

The β-delayed neutron emission probability, Pn, of very neutron-rich nuclei allows us to achieve a better understanding of the nuclear structure above the neutron separation energy, Sn. The emission of neutrons can become the dominant decay process in neutron-rich astrophysical phenomena such as the rapid neutron capture process (r-process). There are around 600 accessible isotopes for which β-delayed one-neutron emission (β1n) is energetically allowed, but the branching ratio has only been determined for about one third of them. β1n decays have been experimentally measured up to the mass A ∼ 150, plus a single measurement of 210Tl. Concerning two-neutron emitters (β2n), ∼ 300 isotopes are …

neutron-rich nucleiAstrophysics::High Energy Astrophysical PhenomenaNuclear Theorynuclear structureNuclear Experimentbeta-delayed neutron emission
researchProduct