0000000000699905

AUTHOR

Matteo Calligaris

0000-0002-5330-3537

Quantitative Proteomics Reveals Changes Induced by TIMP-3 on Cell Membrane Composition and Novel Metalloprotease Substrates

Ectodomain shedding is a key mechanism of several biological processes, including cell-communication. Disintegrin and metalloproteinases (ADAMs), together with the membrane-type matrix metalloproteinases, play a pivotal role in shedding transmembrane proteins. Aberrant shedding is associated to several pathological conditions, including arthritis. Tissue inhibitor of metalloproteases 3 (TIMP-3), an endogenous inhibitor of ADAMs and matrix metalloproteases (MMPs), has been proven to be beneficial in such diseases. Thus, strategies to increase TIMP-3 bioavailability in the tissue have been sought for development of therapeutics. Nevertheless, high levels of TIMP-3 may lead to mechanism-based …

research product

An In Vitro Model of Glioma Development

Gliomas are the prevalent forms of brain cancer and derive from glial cells. Among them, astrocytomas are the most frequent. Astrocytes are fundamental for most brain functions, as they contribute to neuronal metabolism and neurotransmission. When they acquire cancer properties, their functions are altered, and, in addition, they start invading the brain parenchyma. Thus, a better knowledge of transformed astrocyte molecular properties is essential. With this aim, we previously developed rat astrocyte clones with increasing cancer properties. In this study, we used proteomic analysis to compare the most transformed clone (A-FC6) with normal primary astrocytes. We found that 154 proteins are…

research product

Strategies to Target ADAM17 in Disease: From Its Discovery to the iRhom Revolution

For decades, disintegrin and metalloproteinase 17 (ADAM17) has been the object of deep investigation. Since its discovery as the tumor necrosis factor convertase, it has been considered a major drug target, especially in the context of inflammatory diseases and cancer. Nevertheless, the development of drugs targeting ADAM17 has been harder than expected. This has generally been due to its multifunctionality, with over 80 different transmembrane proteins other than tumor necrosis factor α (TNF) being released by ADAM17, and its structural similarity to other metalloproteinases. This review provides an overview of the different roles of ADAM17 in disease and the effects of its ablation in a n…

research product