0000000000699932

AUTHOR

Davide Mercadante

0000-0001-6792-7706

showing 2 related works from this author

Probing the Paradigm of Promiscuity for N‐Heterocyclic Carbene Complexes and their Protein Adduct Formation

2021

Metal complexes can be considered a "paradigm of promiscuity" when it comes to their interactions with proteins. They often form adducts with a variety of donor atoms in an unselective manner. We have characterized the adducts formed between a series of isostructural N-heterocyclic carbene (NHC) complexes with Ru, Os, Rh, and Ir centers and the model protein hen egg white lysozyme by X-ray crystallography and mass spectrometry. Distinctive behavior for the metal compounds was observed with the more labile Ru and Rh complexes targeting mainly a surface l-histidine moiety through cleavage of p-cymene or NHC co-ligands, respectively. In contrast, the more inert Os and Ir derivatives were detec…

Protein mass spectrometryStereochemistryBioorganometallic chemistryGeneral ChemistryGeneral MedicineLigand (biochemistry)CatalysisAdductchemistry.chemical_compoundchemistryMoietyIsostructuralBinding siteCarbeneAngewandte Chemie
researchProduct

Two differential binding mechanisms of FG-nucleoporins and nuclear transport receptors

2018

Summary Phenylalanine-glycine-rich nucleoporins (FG-Nups) are intrinsically disordered proteins, constituting the selective barrier of the nuclear pore complex (NPC). Previous studies showed that nuclear transport receptors (NTRs) were found to interact with FG-Nups by forming an “archetypal-fuzzy” complex through the rapid formation and breakage of interactions with many individual FG motifs. Here, we use single-molecule studies combined with atomistic simulations to show that, in sharp contrast, FG-Nup214 undergoes a coupled reconfiguration-binding mechanism when interacting with the export receptor CRM1. Association and dissociation rate constants are more than an order of magnitude lowe…

0301 basic medicineModels MolecularGlycosylationglycosylationProtein ConformationPhenylalanineGlycineSequence (biology)Intrinsically disordered proteinsnuclear transport receptorssingle-molecule FRETGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health scienceschemistry.chemical_compound0302 clinical medicineEscherichia coliFluorescence Resonance Energy TransferHumansNuclear poreReceptorlcsh:QH301-705.5Single-molecule FRETmolecular dynamics simulationsbinding mechanismintrinsically disordered proteinFG-Nup3. Good healthNuclear Pore Complex Proteins030104 developmental biologychemistrylcsh:Biology (General)BiophysicsNuclear PoreNucleoporinNuclear transport030217 neurology & neurosurgeryProtein BindingCell Reports
researchProduct