0000000000700428

AUTHOR

Fredrik Jonsson

showing 4 related works from this author

2D photonic defect layers in 3D inverted opals on Si platforms

2006

Dielectric spheres synthesised for the fabrication of self-organized photonic crystals such as opals offer large opportunities for the design of novel nanophotonic devices. In this paper, we show a hexagonal superlattice monolayer of dielectric spheres inscribed on a 3D colloidal photonic crystal by e-beam lithography. The crystal is produced by a variation of the vertical drawing deposition method assisted by an acoustic field. The structures were chosen after simulations showed that a hexagonal super-lattice monolayer in air exhibits an even photonic band gap below the light cone if the refractive index of the spheres is higher than 1.93.

Materials sciencesuperlatticesSuperlatticePhysics::OpticsDielectricphotonic band gapCrystalCondensed Matter::Materials ScienceOpticselectron beam lithographyMonolayerPhotonic crystalrefractive indexnanotechnologybusiness.industrysiliconself-assemblyColloidal crystalmicro-opticsmonolayersintegrated opticsphotonic crystalsdielectric materialsOptoelectronicsPhotonicselemental semiconductorsbusinessElectron-beam lithography
researchProduct

Crystallization of silica opals onto patterned silicon wafer

2006

We report on fabrication of high quality opaline photonic crystals from large silica spheres, self-assembled in hydrophilic trenches of silicon wafers by using a drawing apparatus with a combination of stirring. The achievements here reported comprise a spatial selectivity of opal crystallization without special treatment of the wafer surface, a filling of the trenches up to the top, leading to a spatially uniform film thickness, particularly an absence of cracks within the size of the trenches, and finally a good three-dimensional order of the opal lattice even in trenches with a complex confined geometry, verified using optical measurements. The opal lattice was found to match the pattern…

Materials scienceFabricationSiliconbusiness.industrychemistry.chemical_elementColloidal crystallaw.inventionOpticschemistrylawOptoelectronicsWaferSPHERESSelf-assemblyCrystallizationbusinessPhotonic crystalSPIE Proceedings
researchProduct

Towards Si-based photonic circuits: Integrating photonic crystals in silicon-on-insulator platforms

2007

In the context of Si-based photonics, we report on a strategy to integrate two optical components, a 3D photonic crystal light emitter and a waveguide, in a silicon-on-insulator patterned substrate. Self-assembled colloidal photonic crystals are produced with high crystalline quality and spatial selectivity. Plane wave expansion and finite-difference time-domain have been used to find suitable configurations for positioning emitters and waveguides. The first steps toward the realisation of these configurations are presented.

SOIMaterials sciencebusiness.industryPhotonic integrated circuitPlane wavesiliconPhysics::OpticsSilicon on insulatorCondensed Matter PhysicsYablonoviteElectronic Optical and Magnetic Materialslaw.inventionsilicon-on-insulatorOpticslawphotonic crystalsMaterials ChemistryOptoelectronicsPlane wave expansionElectrical and Electronic EngineeringPhotonicsbusinessWaveguidePhotonic crystalSolid-State Electronics
researchProduct

Artificially inscribed defects in opal photonic crystals

2005

Opals are three-dimensional photonic crystals, self-assembled from dielectric spherical beads into a face-centered cubic lattice. By introducing intentional defects in the crystal lattice, one modifies features such as spontaneous emission and the directionality of diffracted light. We here present a method for the artificial introduction of a lattice of such intentional defects in self-assembled poly(methyl methacrylate) (PMMA) photonic crystals by means of electron beam lithography. The inscribed defects are of the size of an individual bead, providing a broad spectral range between adjacent resonance peaks. This opens for devices with single line transmission in the photonic band gap, as…

DiffractionMaterials sciencebusiness.industryPhysics::OpticsCrystal structureDielectricCondensed Matter PhysicsAtomic and Molecular Physics and OpticsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsOpticsLattice (order)Spontaneous emissionSelf-assemblyElectrical and Electronic EngineeringbusinessElectron-beam lithographyPhotonic crystalMicroelectronic Engineering
researchProduct