0000000000701138

AUTHOR

Ke Xu

showing 2 related works from this author

State of the art and prospects for halide perovskite nanocrystals

2021

Financiado para publicación en acceso aberto: Universidade de Vigo/CISUG Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of …

light-emitting devicesGeneral Physics and AstronomyNanotechnology02 engineering and technology010402 general chemistry01 natural sciences7. Clean energyphotocatalystsmetal-halide perovskite nanocrystalslead-free perovskite nanocrystalsPhotovoltaicsGeneral Materials ScienceNanoscience & NanotechnologyPerovskite (structure)Electronic propertiesPhysicsbusiness.industryPhysicsperovskite nanoplateletsGeneral Engineering021001 nanoscience & nanotechnology0104 chemical sciencesddc:Chemistryphotovoltaicsperovskite nanocubesmetal-halide perovskite nanocrystals; perovskite nanoplatelets; perovskite nanocubes; perovskite nanowires; lead-free perovskite nanocrystals; light-emitting devices; photovoltaics; lasers; photocatalysts; photodetectorsNanocrystalperovskite nanowiresphotodetectors2307 Química Física0210 nano-technologybusinessEngineering sciences. Technologylasers
researchProduct

Understanding the Stability and Recrystallization Behavior of Amorphous Zinc Phosphate

2021

Zinc phosphate, an important pigment in phosphate conversion coatings, forms protective films on rubbing surfaces. We have simulated the underlying reactions under shear by ball-milling zinc phosphate and monitored the reaction of hopeite (Zn3(PO4)2·4H2O) and the retarded recrystallization of the amorphous reaction product by powder X-ray diffraction (PXRD) and quantitative infrared (IR) spectroscopy. Abrasion of stainless steel was simulated by addition of pure 57Fe. The results provide insight into the chemistry of phosphate conversion coatings or during battery cycling of metal phosphates and give theoretical guidance for the preparation of amorphous phosphates. Thermal analysis revealed…

inorganic chemicalsRecrystallization (geology)Materials science02 engineering and technology010402 general chemistry01 natural sciencesMetalchemistry.chemical_compoundImpurityPhysical and Theoretical Chemistrytechnology industry and agricultureZinc phosphate021001 nanoscience & nanotechnologyPhosphate0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAmorphous solidGeneral EnergyChemical engineeringchemistryConversion coatingvisual_artvisual_art.visual_art_medium0210 nano-technologyPowder diffractionThe Journal of Physical Chemistry C
researchProduct