0000000000701989
AUTHOR
Vincent J. M. N. L. Felde
In Situ X-Ray Tomography Imaging of Soil Water and Cyanobacteria From Biological Soil Crusts Undergoing Desiccation
Biological soil crusts (biocrusts) are millimeter-sized microbial communities developing on the topsoils of arid lands that cover some 12% of Earth’s continental area. Biocrusts consist of an assemblage of mineral soil particles consolidated into a crust by microbial organic polymeric substances that are mainly produced by the filamentous bundle-forming cyanobacteria, among which Microcoleus vaginatus is perhaps the most widespread. This cyanobacterium is the primary producer for, and main architect of biocrusts in many arid soils, sustaining the development of a diverse microbial community. Biocrusts are only active when wet, and spend most of their time in a state of desiccated quiescence…
Microhydrological Niches in Soils: How Mucilage and EPS Alter the Biophysical Properties of the Rhizosphere and Other Biological Hotspots
Plant roots and bacteria are capable of buffering erratic fluctuations of water content in their local soil environment by releasing a diverse, highly polymeric blend of substances (e.g. extracellular polymeric substances [EPS] and mucilage). Although this concept is well accepted, the physical mechanisms by which EPS and mucilage interact with the soil matrix and determine the soil water dynamics remain unclear. High-resolution X-ray computed tomography revealed that upon drying in porous media, mucilage (from maize [Zea mays L.] roots) and EPS (from intact biocrusts) form filaments and two-dimensional interconnected structures spanning across multiple pores. Unlike water, these mucilage a…