0000000000702483
AUTHOR
Pauliina A. M. Summanen
Chromatin structure influences rate and spectrum of spontaneous mutations in Neurospora crassa
While mutation rates have been extensively studied, variation in mutation rates throughout the genome is poorly understood. To understand patterns of genetic variation, it is important to understand how mutation rates vary. Chromatin modifications may be an important factor in determining variation in mutation rates in eukaryotic genomes. To study variation in mutation rates, we performed a mutation accumulation experiment in the filamentous fungus Neurospora crassa, and sequenced the genomes of the 40 MA lines that had been propagated asexually for approximately 1015 [1003, 1026] mitoses. We detected 1322 mutations in total, and observed that the mutation rate was higher in regions of low …
Parental effects in a filamentous fungus : Phenotype, fitness and mechanism
AbstractAdaptation to changing environments often requires meaningful phenotypic modifications to match the current conditions. However, obtaining information about the surroundings during an organism’s own lifetime may only permit accommodating relatively late developmental modifications. Therefore, it may be advantageous to rely on inter-generational or trans-generational cues that provide information about the environment as early as possible to allow development along an optimal trajectory. Transfer of information or resources across generations, known as parental effects, is well documented in animals and plants but not in other eukaryotes, such as fungi. Understanding parental effects…
Quantitative genetics of temperature performance curves of Neurospora crassa
AbstractEarth’s temperature is increasing due to anthropogenic CO2emissions; and organisms need either to adapt to higher temperatures, migrate into colder areas, or face extinction. Temperature affects nearly all aspects of an organism’s physiology via its influence on metabolic rate and protein structure, therefore genetic adaptation to increased temperature may be much harder to achieve compared to other abiotic stresses. There is still much to be learned about the evolutionary potential for adaptation to higher temperatures, therefore we studied the quantitative genetics of growth rates in different temperatures that make up the thermal performance curve of the fungal model systemNeuros…