0000000000703391

AUTHOR

Vegard Lima

showing 14 related works from this author

Geometry of spaces of compact operators

2008

We introduce the notion of compactly locally reflexive Banach spaces and show that a Banach space X is compactly locally reflexive if and only if $\mathcal{K}(Y,X^{**})\subseteq\mathcal{K}(Y,X)^{**}$ for all reflexive Banach spaces Y. We show that X * has the approximation property if and only if X has the approximation property and is compactly locally reflexive. The weak metric approximation property was recently introduced by Lima and Oja. We study two natural weak compact versions of this property. If X is compactly locally reflexive then these two properties coincide. We also show how these properties are related to the compact approximation property and the compact approximation prope…

Mathematics::Functional AnalysisApproximation propertyGeneral MathematicsEberlein–Šmulian theoremBanach spaceGeometryUniformly convex spaceCompact operatorCompactly generated spaceReflexive spaceTsirelson spaceMathematics
researchProduct

Relatively weakly open convex combinations of slices

2018

We show that c 0 c_0 and, in fact, C ( K ) C(K) for any scattered compact Hausdorff space K K have the property that finite convex combinations of slices of the unit ball are relatively weakly open.

Unit sphereCombinatoricsDiscrete mathematicsProperty (philosophy)Applied MathematicsGeneral Mathematics010102 general mathematicsHausdorff spaceRegular polygon0101 mathematics01 natural sciencesMathematics
researchProduct

Bounded approximation properties via integral and nuclear operators

2010

Published version of an article in the journal:Proceedings of the American Mathematical Society. Also available from the publisher, Open Access

ComputingMilieux_GENERALRank (linear algebra)Mathematical societyApplied MathematicsGeneral MathematicsBounded functionBanach spaceCalculusIdeal (order theory)GeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)MathematicsProceedings of the American Mathematical Society
researchProduct

Banach spaces where convex combinations of relatively weakly open subsets of the unit ball are relatively weakly open

2018

We introduce and study Banach spaces which have property CWO, i.e., every finite convex combination of relatively weakly open subsets of their unit ball is open in the relative weak topology of the unit ball. Stability results of such spaces are established, and we introduce and discuss a geometric condition---property (co)---on a Banach space. Property (co) essentially says that the operation of taking convex combinations of elements of the unit ball is, in a sense, an open map. We show that if a finite dimensional Banach space $X$ has property (co), then for any scattered locally compact Hausdorff space $K$, the space $C_0(K,X)$ of continuous $X$-valued functions vanishing at infinity has…

Unit sphereMathematics::Functional AnalysisPure mathematicsWeak topology46B04 46B20General Mathematics010102 general mathematicsBanach spaceHausdorff spaceSpace (mathematics)01 natural sciencesOpen and closed mapsFunctional Analysis (math.FA)Mathematics - Functional AnalysisComplex spaceFOS: MathematicsLocally compact space0101 mathematicsVDP::Mathematics and natural science: 400MathematicsStudia Mathematica
researchProduct

Daugavet- and delta-points in Banach spaces with unconditional bases

2020

We study the existence of Daugavet- and delta-points in the unit sphere of Banach spaces with a 1 1 -unconditional basis. A norm one element x x in a Banach space is a Daugavet-point (resp. delta-point) if every element in the unit ball (resp. x x itself) is in the closed convex hull of unit ball elements that are almost at distance 2 2 from x x . A Banach space has the Daugavet property (resp. diametral local diameter two property) if and only if every norm one element is a Daugavet-point (resp. delta-point). It is well-known that a Banach space with the Daugavet property does not have an unconditional basis. Similarly spaces with the diametral local diameter two property do not have an un…

Convex hullUnit spherePure mathematicsMathematics::Functional AnalysisProperty (philosophy)Basis (linear algebra)010102 general mathematics05 social sciencesMathematicsofComputing_GENERALBanach spaceGeneral MedicineVDP::Matematikk og Naturvitenskap: 400::Matematikk: 41001 natural sciences46B20 (Primary) 46B22 46B04 (Secondary)Functional Analysis (math.FA)Mathematics - Functional AnalysisNorm (mathematics)0502 economics and businessFOS: Mathematics050207 economics0101 mathematicsElement (category theory)Constant (mathematics)Mathematics
researchProduct

Delta- and Daugavet points in Banach spaces

2020

AbstractA Δ-pointxof a Banach space is a norm-one element that is arbitrarily close to convex combinations of elements in the unit ball that are almost at distance 2 fromx. If, in addition, every point in the unit ball is arbitrarily close to such convex combinations,xis a Daugavet point. A Banach spaceXhas the Daugavet property if and only if every norm-one element is a Daugavet point. We show that Δ- and Daugavet points are the same inL1-spaces, inL1-preduals, as well as in a big class of Müntz spaces. We also provide an example of a Banach space where all points on the unit sphere are Δ-points, but none of them are Daugavet points. We also study the property that the unit ball is the clo…

Convex hullUnit spherePure mathematicsClass (set theory)General Mathematics010102 general mathematicsBanach spaceRegular polygonHausdorff spaceVDP::Matematikk og Naturvitenskap: 400::Matematikk: 41001 natural sciences010101 applied mathematicsPoint (geometry)0101 mathematicsElement (category theory)MathematicsProceedings of the Edinburgh Mathematical Society
researchProduct

Almost square Banach spaces

2014

We single out and study a natural class of Banach spaces -- almost square Banach spaces. In an almost square space we can find, given a finite set $x_1,x_2,\ldots,x_N$ in the unit sphere, a unit vector $y$ such that $\|x_i-y\|$ is almost one. These spaces have duals that are octahedral and finite convex combinations of slices of the unit ball of an almost square space have diameter 2. We provide several examples and characterizations of almost square spaces. We prove that non-reflexive spaces which are M-ideals in their biduals are almost square. We show that every separable space containing a copy of $c_0$ can be renormed to be almost square. A local and a weak version of almost square spa…

Unit sphereMathematics::Functional AnalysisApplied Mathematics010102 general mathematicsBanach spaceSpace (mathematics)01 natural sciencesSquare (algebra)Functional Analysis (math.FA)Separable spaceMathematics - Functional Analysis010101 applied mathematicsCombinatoricsUnit vectorFOS: MathematicsDual polyhedron0101 mathematics46B20 46B04 46B07Finite setAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Absolutely summing operators on C[0,1] as a tree space and the bounded approximation property

2010

Abstract Let X be a Banach space. For describing the space P ( C [ 0 , 1 ] , X ) of absolutely summing operators from C [ 0 , 1 ] to X in terms of the space X itself, we construct a tree space l 1 tree ( X ) on X. It consists of special trees in X which we call two-trunk trees. We prove that P ( C [ 0 , 1 ] , X ) is isometrically isomorphic to l 1 tree ( X ) . As an application, we characterize the bounded approximation property (BAP) and the weak BAP in terms of X ∗ -valued sequence spaces.

Discrete mathematicsSequenceTree (descriptive set theory)Approximation propertyBounded functionInfinite-dimensional vector functionBanach spaceSpace (mathematics)Operator spaceAnalysisMathematicsJournal of Functional Analysis
researchProduct

Gruppebasert prosjektoppgave i matematikk: Veiledernes erfaringer

2021

I denne presentasjonen vil vi rapportere veilederes erfaringer med å bidra i et matematisk modelleringsprosjekt. Prosjektet ble introdusert i begynnelsen av første semester matematikkurs for ingeniørstudenter. Målet med prosjektet er å knytte matematikken til realistiske ingeniørgfag problemstillinger og at studentene skal få en nærmere tilknytning til faglærerne i sitt felt. Vi ønsker også å lære studentene flere matematiske kompetanser, som det er vanskelig å trene i forelesninger og øvingstimer. I prosjektet ble 483 studenter delt i 70 grupper som ble veiledet av 20 faglig ansatte fra alle seksjoner av ingeniøravdelingene. Veilederne rapporterer om at de opplever prosjektoppgaven som et …

Nordic Journal of STEM Education
researchProduct

On Daugavet indices of thickness

2020

Inspired by R. Whitley's thickness index the last named author recently introduced the Daugavet index of thickness of Banach spaces. We continue the investigation of the behavior of this index and also consider two new versions of the Daugavet index of thickness, which helps us solve an open problem which connect the Daugavet indices with the Daugavet equation. Moreover, we will improve the formerly known estimates of the behavior of Daugavet index on direct sums of Banach spaces by establishing sharp bounds. As a consequence of our results we prove that, for every $0<\delta<2$, there exists a Banach space where the infimum of the diameter of convex combinations of slices of the unit ball i…

Unit spherePure mathematicsMathematics::Functional AnalysisIndex (economics)Existential quantificationOpen problem010102 general mathematicsRegular polygonBanach space01 natural sciencesInfimum and supremumFunctional Analysis (math.FA)Negative - answerMathematics - Functional Analysis0103 physical sciencesFOS: Mathematics46B20 46B22010307 mathematical physics0101 mathematicsAnalysisMathematics
researchProduct

Strict u-ideals in Banach spaces

2009

We study strict u-ideals in Banach spaces. A Banach space X is a strict u-ideal in its bidual when the canonical decomposition X = X X ? is unconditional. We characterize Banach spaces which are strict u-ideals in their bidual and show that if X is a strict u-ideal in a Banach space Y then X contains c0. We also show that '1 is not a u-ideal.

Discrete mathematicsMathematics::Functional AnalysisMathematics::Commutative AlgebraApproximation propertyGeneral MathematicsEberlein–Šmulian theoremInfinite-dimensional vector functionBanach spaceInterpolation spaceBanach manifoldC0-semigroupLp spaceMathematicsStudia Mathematica
researchProduct

Absolutely summing operators on C[0,1] as a tree space and the bounded approximation property

AbstractLet X be a Banach space. For describing the space P(C[0,1],X) of absolutely summing operators from C[0,1] to X in terms of the space X itself, we construct a tree space ℓ1tree(X) on X. It consists of special trees in X which we call two-trunk trees. We prove that P(C[0,1],X) is isometrically isomorphic to ℓ1tree(X). As an application, we characterize the bounded approximation property (BAP) and the weak BAP in terms of X∗-valued sequence spaces.

Banach spacesAbsolutely summing operatorsTwo-trunk treesContinuous functions on [01]Linear B-splinesBounded approximation propertiesJournal of Functional Analysis
researchProduct

Asymptotic geometry and Delta-points

2022

We study Daugavet- and $\Delta$-points in Banach spaces. A norm one element $x$ is a Daugavet-point (respectively a $\Delta$-point) if in every slice of the unit ball (respectively in every slice of the unit ball containing $x$) you can find another element of distance as close to $2$ from $x$ as desired. In this paper we look for criteria and properties ensuring that a norm one element is not a Daugavet- or $\Delta$-point. We show that asymptotically uniformly smooth spaces and reflexive asymptotically uniformly convex spaces do not contain $\Delta$-points. We also show that the same conclusion holds true for the James tree space as well as for its predual. Finally we prove that there exis…

Mathematics - Functional Analysis46B20 46B22 46B04 46B06 (Primary)Mathematics::Functional AnalysisAlgebra and Number TheoryFOS: MathematicsVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410AnalysisFunctional Analysis (math.FA)Banach Journal of Mathematical Analysis
researchProduct

Bounded approximation properties via integral and nuclear operators

2010

Published version of an article in the journal:Proceedings of the American Mathematical Society. Also available from the publisher, Open Access Let X be a Banach space and let A be a Banach operator ideal. We say that X has the lambda-bounded approximation property for A (lambda-BAP for A) if for every Banach space Y and every operator T is an element of A(X, Y), there exists a net (S-alpha) of finite rank operators on X such that S-alpha -> I-X uniformly on compact subsets of X and lim(alpha) sup parallel to TS alpha parallel to(A)<=lambda parallel to T parallel to(A). We prove that the (classical) lambda-BAP is precisely the lambda-BAP for the ideal I of integral operators, or equivalentl…

VDP::Mathematics and natural science: 400::Mathematics: 410::Analysis: 411
researchProduct