0000000000704104

AUTHOR

Devin G. E. Walker

Perturbative unitarity constraints on the NMSSM Higgs Sector

Abstract We place perturbative unitarity constraints on both the dimensionful and dimensionless parameters in the Next-to-Minimal Supersymmetric Standard Model (NMSSM) Higgs Sector. These constraints, plus the requirement that the singlino and/or Higgsino constitutes at least part of the observed dark matter relic abundance, generate upper bounds on the Higgs, neutralino and chargino mass spectrum. Requiring higher-order corrections to be no more than 41% of the tree-level value, we obtain an upper bound of 20 TeV for the heavy Higgses and 12 TeV for the charginos and neutralinos outside defined fine-tuned regions. If the corrections are no more than 20% of the tree-level value, the bounds …

research product

Perturbative unitarity constraints on gauge portals

Abstract Dark matter that was once in thermal equilibrium with the Standard Model is generally prohibited from obtaining all of its mass from the electroweak phase transition. This implies a new scale of physics and mediator particles to facilitate dark matter annihilation. In this work, we focus on dark matter that annihilates through a generic gauge boson portal. We show how partial wave unitarity places upper bounds on the dark gauge boson, dark Higgs and dark matter masses. Outside of well-defined fine-tuned regions, we find an upper bound of 9 TeV for the dark matter mass when the dark Higgs and dark gauge bosons both facilitate the dark matter annihilations. In this scenario, the uppe…

research product

Perturbative Unitarity Constraints on Charged/Colored Portals

Dark matter that was once in thermal equilibrium with the Standard Model is generally prohibited from obtaining all of its mass from the electroweak or QCD phase transitions. This implies a new scale of physics and mediator particles needed to facilitate dark matter annihilations. In this work, we consider scenarios where thermal dark matter annihilates via scalar mediators that are colored and/or electrically charged. We show how partial wave unitarity places upper bounds on the masses and couplings on both the dark matter and mediators. To do this, we employ effective field theories with dark matter as well as three flavors of sleptons or squarks with minimum flavor violation. For Dirac (…

research product