0000000000704123

AUTHOR

Ashok K. Agrawala

Thompson Sampling for Dynamic Multi-armed Bandits

The importance of multi-armed bandit (MAB) problems is on the rise due to their recent application in a large variety of areas such as online advertising, news article selection, wireless networks, and medicinal trials, to name a few. The most common assumption made when solving such MAB problems is that the unknown reward probability theta k of each bandit arm k is fixed. However, this assumption rarely holds in practice simply because real-life problems often involve underlying processes that are dynamically evolving. In this paper, we model problems where reward probabilities theta k are drifting, and introduce a new method called Dynamic Thompson Sampling (DTS) that facilitates Order St…

research product

Arm Space Decomposition as a Strategy for Tackling Large Scale Multi-armed Bandit Problems

Recent multi-armed bandit based optimization schemes provide near-optimal balancing of arm exploration against arm exploitation, allowing the optimal arm to be identified with probability arbitrarily close to unity. However, the convergence speed drops dramatically as the number of bandit arms grows large, simply because singling out the optimal arm requires experimentation with all of the available arms. Furthermore, effective exploration and exploitation typically demands computational resources that grow linearly with the number of arms. Although the former problem can be remedied to some degree when prior knowledge about arm correlation is available, the latter problem persists. In this…

research product

Successive Reduction of Arms in Multi-Armed Bandits

The relevance of the multi-armed bandit problem has risen in the past few years with the need for online optimization techniques in Internet systems, such as online advertisement and news article recommendation. At the same time, these applications reveal that state-of-the-art solution schemes do not scale well with the number of bandit arms. In this paper, we present two types of Successive Reduction (SR) strategies - 1) Successive Reduction Hoeffding (SRH) and 2) Successive Reduction Order Statistics (SRO). Both use an Order Statistics based Thompson Sampling method for arm selection, and then successively eliminate bandit arms from consideration based on a confidence threshold. While SRH…

research product