0000000000704542

AUTHOR

Kathleen A. Mckeon

showing 2 related works from this author

Chromatic sums for colorings avoiding monochromatic subgraphs

2015

Abstract Given graphs G and H, a vertex coloring c : V ( G ) → N is an H-free coloring of G if no color class contains a subgraph isomorphic to H. The H-free chromatic number of G, χ ( H , G ) , is the minimum number of colors in an H-free coloring of G. The H-free chromatic sum of G , Σ ( H , G ) , is the minimum value achieved by summing the vertex colors of each H-free coloring of G. We provide a general bound for Σ ( H , G ) , discuss the computational complexity of finding this parameter for different choices of H, and prove an exact formulas for some graphs G. For every integer k and for every graph H, we construct families of graphs, G k with the property that k more colors than χ ( …

Vertex (graph theory)Computational complexity theoryApplied MathematicsChromatic sumValue (computer science)forbidden subgraphsCombinatoricsGreedy coloringIntegerQA1-939sum of colorsDiscrete Mathematics and CombinatoricsChromatic scaleMonochromatic colorcoloringMathematicsMathematicsDiscussiones Mathematicae Graph Theory
researchProduct

Chromatic Sums for Colorings Avoiding Monochromatic Subgraphs

2013

Abstract Given graphs G and H, a vertex coloring c : V ( G ) → N is an H-free coloring of G if no color class contains a subgraph isomorphic to H. The H-free chromatic number of G, χ ( H , G ) , is the minimum number of colors in an H-free coloring of G. The H-free chromatic sum of G , Σ ( H , G ) , is the minimum value achieved by summing the vertex colors of each H-free coloring of G. We provide a general bound for Σ ( H , G ) , discuss the computational complexity of finding this parameter for different choices of H, and prove an exact formulas for some graphs G. For every integer k and for every graph H, we construct families of graphs, G k with the property that k more colors than χ ( …

Discrete mathematicsCombinatoricsGreedy coloringVertex (graph theory)Edge coloringApplied MathematicsDiscrete Mathematics and CombinatoricsMonochromatic colorChromatic scaleComplete coloringFractional coloringBrooks' theoremMathematicsElectronic Notes in Discrete Mathematics
researchProduct