6533b836fe1ef96bd12a11e9
RESEARCH PRODUCT
Chromatic Sums for Colorings Avoiding Monochromatic Subgraphs
Kathleen A. MckeonEwa KubickaGrzegorz KubickiGrzegorz Kubickisubject
Discrete mathematicsCombinatoricsGreedy coloringVertex (graph theory)Edge coloringApplied MathematicsDiscrete Mathematics and CombinatoricsMonochromatic colorChromatic scaleComplete coloringFractional coloringBrooks' theoremMathematicsdescription
Abstract Given graphs G and H, a vertex coloring c : V ( G ) → N is an H-free coloring of G if no color class contains a subgraph isomorphic to H. The H-free chromatic number of G, χ ( H , G ) , is the minimum number of colors in an H-free coloring of G. The H-free chromatic sum of G , Σ ( H , G ) , is the minimum value achieved by summing the vertex colors of each H-free coloring of G. We provide a general bound for Σ ( H , G ) , discuss the computational complexity of finding this parameter for different choices of H, and prove an exact formulas for some graphs G. For every integer k and for every graph H, we construct families of graphs, G k with the property that k more colors than χ ( H , G ) are required to realize Σ ( H , G ) for H-free colorings. More complexity results and constructions of graphs requiring extra colors are given for planar and outerplanar graphs.
| year | journal | country | edition | language |
|---|---|---|---|---|
| 2013-09-01 | Electronic Notes in Discrete Mathematics |