0000000000705153

AUTHOR

Paolo Papale

0000-0002-5207-2124

The 2007 eruption of Stromboli volcano: Insights from real-time measurement of the volcanic gas plume CO2/SO2 ratio

Abstract The recent eruption of Stromboli in February–April 2007 offered a unique chance to test our current understanding of processes driving the transition from ordinary (persistent Strombolian) to effusive activity, and the ability of instrumental geophysical and geochemical networks to interpret and predict these events. Here, we report on the results of two years of in-situ sensing of the CO 2 /SO 2 ratio in Stromboli's volcanic gas plume, in the attempt to put constraints on the trigger mechanisms and dynamics of the eruption. We show that large variations of the plume CO 2 /SO 2 ratio (range, 0.9–26) preceded the onset of the eruption (since December 2007), interrupting a period of …

research product

Forecasting Etna eruptions by real-time observation of volcanic gas composition

It is generally accepted, but not experimentally proven, that a quantitative prediction of volcanic eruptions is possible from the evaluation of volcanic gas data. By discussing the results of two years of real-time observation of H2O, CO2, and SO2 in volcanic gases from Mount Etna volcano, we unambiguously demonstrate that increasing CO2/SO2 ratios can allow detection of the pre-eruptive degassing of rising magmas. Quantitative modeling by the use of a saturation model allows us to relate the pre-eruptive increases of the CO2/SO2 ratio to the refilling of Etna's shallow conduits with CO2-rich deep-reservoir magmas, leading to pressurization and triggering of eruption. The advent of real-ti…

research product