0000000000705155

AUTHOR

Mimoun Zelmat

Chaos Synchronization Based on Unknown Input Proportional Multiple-Integral Fuzzy Observer

Published version of an article in the journal: Abstract and Applied Analysis. Also available from the publisher at: http://dx.doi.org/10.1155/2013/670878 Open Access This paper presents an unknown input Proportional Multiple-Integral Observer (PIO) for synchronization of chaotic systems based on Takagi-Sugeno (TS) fuzzy chaotic models subject to unmeasurable decision variables and unknown input. In a secure communication configuration, this unknown input is regarded as a message encoded in the chaotic system and recovered by the proposed PIO. Both states and outputs of the fuzzy chaotic models are subject to polynomial unknown input with kth derivative zero. Using Lyapunov stability theory…

research product

Design of unknown inputs proportional integral observers for TS fuzzy models

In this paper the design of unknown inputs proportional integral observers for Takagi-Sugeno (TS) fuzzy models subject to unmeasurable decision variables is proposed. These unknown inputs affect both state and output of the system. The synthesis of these observers is based on two hypotheses that the unknown inputs are under the polynomials form with their kth derivatives zero for the first one and bounded norm for the second one, hence two approaches. The Lyapunov theory and L"2-gain technique are used to develop the stability conditions of such observers in LMIs (linear matrix inequality) formulation. A simulation example is given to validate and compare the proposed design conditions for …

research product