0000000000706856

AUTHOR

Krisna Murti

showing 2 related works from this author

NFATc1 releases BCL6-dependent repression of CCR2 agonist expression in peritoneal macrophages fromSaccharomyces cerevisiaeinfected mice

2016

The link between the extensive usage of calcineurin (CN) inhibitors cyclosporin A and tacrolimus (FK506) in transplantation medicine and the increasing rate of opportunistic infections within this segment of patients is alarming. Currently, how peritoneal infections are favored by these drugs, which impair the activity of several signaling pathways including the Ca(++) /CN/NFAT, Ca(++) /CN/cofilin, Ca(++) /CN/BAD, and NF-κB networks, is unknown. Here, we show that Saccharomyces cerevisiae infection of peritoneal resident macrophages triggers the transient nuclear translocation of NFATc1β isoforms, resulting in a coordinated, CN-dependent induction of the Ccl2, Ccl7, and Ccl12 genes, all enc…

0301 basic medicineChemokineReceptors CCR2Calcineurin InhibitorsImmunologySaccharomyces cerevisiaeOpportunistic InfectionsCCL7MonocytesMice03 medical and health sciences0302 clinical medicineCyclosporin aAnimalsProtein IsoformsImmunology and AllergyChemokine CCL7Promoter Regions GeneticCCL12Transcription factorChemokine CCL2NFATC Transcription FactorsbiologyCalcineurinNF-kappa BNFATNFATC Transcription FactorsMonocyte Chemoattractant Proteins3. Good healthCalcineurinProtein Transport030104 developmental biology030220 oncology & carcinogenesisMacrophages PeritonealProto-Oncogene Proteins c-bcl-6biology.proteinCancer researchEuropean Journal of Immunology
researchProduct

NF-κB factors control the induction of NFATc1 in B lymphocytes

2014

In peripheral lymphocytes, the transcription factors (TFs) NF-κB, NFAT, and AP-1 are the prime targets of signals that emerge from immune receptors. Upon activation, these TFs induce gene networks that orchestrate the growth, expansion, and effector function of peripheral lymphocytes. NFAT and NF-κB factors share several properties, such as a similar mode of induction and architecture in their DNA-binding domain, and there is a subgroup of κB-like DNA promoter motifs that are bound by both types of TFs. However, unlike NFAT and AP-1 factors that interact and collaborate in binding to DNA, NFAT, and NF-κB seem neither to interact nor to collaborate. We show here that NF-κB1/p50 and c-Rel, th…

Gene isoformintegumentary systemEffectorImmunologybreakpoint cluster regionNFATNF-κBBiologyChromatinCell biologychemistry.chemical_compoundchemistryCancer researchImmunology and AllergyReceptorTranscription factorEuropean Journal of Immunology
researchProduct