0000000000706880

AUTHOR

Cristiano Bilello

A correction method for dynamic analysis of linear continuous systems

A method to improve the dynamic response analysis of continuous classically damped linear system is proposed. As in fact usually, following a classical approach, a reduced number of eigenfunctions are accounted for and the response is evaluated by integrating the uncoupled differential equations of motion in modal space, neglecting the contribution of high frequency modes (truncation procedure). Here, starting from the given system, it is proposed to set up two differential equations governing the motion of two new continuous systems: the first one contains only the first m non-zero eigenvalues of the given system and the second one contains the remainder non-zero infinity - m eigenvalues. …

research product

Effects of damage on the response of Euler-Bernoulli beams traversed by a moving mass

The perturbation induced by damage in the dynamic response of Euler-Bernoulli beams traversed by a moving mass is investigated. The structure is discretized into segments of constant bending stiffness, connected together by elastic hinges representing damaged sections. The beam-moving mass interaction force is modelled in the most accurate way by taking into account the effective structural mass distribution and the convective acceleration terms, often omitted in similar studies. The analytical response is obtained through a series expansion of the unknown deflection in a basis of the beam eigenfunctions. The results of experimental tests, performed on a small-scale model of a prototype bri…

research product

Damage Identification of Beams Using Static Test Data

A damage identification procedure for beams under static loads is presented. Damage is modelled through a damage distribution function which determines a variation of the beam stiffness with respect to a reference condition. Using the concept of the equivalent superimposed deformation, the equations governing the static problem are recast in a Fredholm’s integral equation of the second kind in terms of bending moments. The solution of this equation is obtained through an iterative procedure as well as in closed form. The latter is explicitly dependent from the damage parameters, thus, it can be conveniently used to set-up a damage identification procedure. Some numerical results are present…

research product

A correction method for the analysis of continuous linear one-dimensional systems under moving loads

A new correction procedure for dynamic analysis of linear, proportionally damped, continuous systems under traveling concentrated loads is proposed; both cases of non-parametric (moving forces) and parametric (moving mass) loads are considered. Improvement in the evaluation of the dynamic response is obtained by separating the contribution of the low-frequency (LF) modes from that of the high-frequency (HF) modes. The former is calculated, as usual, by classical modal analysis, while the latter is taken into account using a new series expansion of the corresponding particular solution. The advantage of the suggested method is immediately shown in the calculation of the stress distribution s…

research product

A novel identification procedure from ambient vibration data for buildings of the cultural heritage

Ambient modal identification, also known as Operational Modal Analysis (OMA), aims to identify the modal properties of a structure based on vibration data collected when the structure is under its operating conditions, i.e., no initial excitation or known artificial excitation. This procedure for testing and/or monitoring historic buildings, is particularly attractive for civil engineers concerned with the safety of complex historic structures. However, since the external force is not recorded, the identification methods have to be more sophisticated and based on stochastic mechanics. In this context, this contribution will introduce an innovative ambient identification method based on appl…

research product