0000000000707246

AUTHOR

Ivan Gushchin

0000-0002-5348-6070

showing 2 related works from this author

Inverse Conformational Selection in Lipid–Protein Binding

2021

International audience; Interest in lipid interactions with proteins and other biomolecules is emerging not only in fundamental biochemistry but also in the field of nanobiotechnology where lipids are commonly used, for example, in carriers of mRNA vaccines. The outward-facing components of cellular membranes and lipid nanoparticles, the lipid headgroups, regulate membrane interactions with approaching substances, such as proteins, drugs, RNA, or viruses. Because lipid headgroup conformational ensembles have not been experimentally determined in physiologically relevant conditions, an essential question about their interactions with other biomolecules remains unanswered: Do headgroups excha…

DYNAMICSELECTRIC CHARGEBILAYERSPHOSPHATIDYLCHOLINE HEADGROUPMembrane lipidsDEUTERIUMPlasma protein bindingMolecular Dynamics Simulationlipidit010402 general chemistry01 natural sciencesBiochemistrybiomolekyylitCatalysis03 medical and health sciencesMolecular dynamicskemialliset sidoksetColloid and Surface ChemistryProtein structurePHOSPHOLIPID-BINDINGMAGNETIC-RESONANCE[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologySEGMENTAL ORDER[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyConformational ensemblesNuclear Magnetic Resonance Biomolecular030304 developmental biologychemistry.chemical_classification0303 health sciencesChemistryBiomoleculeMEMBRANE-LIPIDSProteinsPhosphatidylglycerolsGeneral Chemistrycomputer.file_formatProtein Data BankLipids0104 chemical sciencesBiophysicsPhospholipid BindingPhosphatidylcholinesMAS NMR1182 Biochemistry cell and molecular biologylipids (amino acids peptides and proteins)proteiinitcomputerProtein Binding
researchProduct

Assembly of Spinach Chloroplast ATP Synthase Rotor Ring Protein-Lipid Complex

2019

Rotor ATPases are large multisubunit membrane protein complexes found in all kingdoms of life. The membrane parts of these ATPases include a ring-like assembly, so-called c-ring, consisting of several subunits c, plugged by a patch of phospholipids. In this report, we use a nature-inspired approach to model the assembly of the spinach (Spinacia oleracea) c14 ring protein-lipid complex, where partially assembled oligomers are pulled toward each other using a biasing potential. The resulting assemblies contain 23 to 26 encapsulated plug lipids, general position of which corresponds well to experimental maps. However, best fit to experimental data is achieved with 15 to 17 lipids inside the c-…

0301 basic medicineSpinaciaATPaseProtein subunitlipiditBiochemistry Genetics and Molecular Biology (miscellaneous)Biochemistrysolukalvotprotein-lipid interactions03 medical and health sciences0302 clinical medicinecomplex assemblymembrane insertionMolecular Biosciencesmembrane proteinProtein–lipid interactionlcsh:QH301-705.5Molecular BiologyOriginal ResearchbiologyATP synthaseannular lipidsChemistrybiology.organism_classificationadenosiinitrifosfaatti030104 developmental biologyMembranelcsh:Biology (General)Membrane proteinProtein-lipid complex030220 oncology & carcinogenesisbiology.proteinBiophysicslipids (amino acids peptides and proteins)proteiinitFrontiers in Molecular Biosciences
researchProduct