0000000000707290
AUTHOR
L. Fasolo
Noise Figures of Merit of rf-SQUID-based Josephson Travelling Wave Parametric Amplifiers
The characterization of the rf-SQUID-based JTWPA in terms of its noise figure and gain for different input states (Fock states or Coherent states) has been carried out. The spectral distribution of the noise temperature Tn and gain G presents a region where the amplifier has a relatively high gain with a thermal noise that can go beyond the standard quantum limit =ℏ/2 (valid only for single mode input states [44]) as shown in Fig. 3. The TWJPA is here biased in its 3WM regime and pumped at p = 12 GHz.
Microwave Quantum Radar using a Josephson Traveling Wave Parametric Amplifier
Detection of low-reflectivity objects can be improved by the so-called Quantum Illumination (QI) procedure. However, quantum detection error probability exponentially decays with the source bandwidth. The Josephson Parametric Amplifiers (JPAs) technology utilized as a source, generating pairs of entangled signals called two-mode squeezed vacuum states, shows a very narrow bandwidth limiting the operation of the Microwave Quantum Illumination (MQI) systems. In this paper, for the first time, a microwave quantum radar setup based on quantum illumination protocol and using a Josephson Traveling Wave Parametric Amplifier (JTWPA) is proposed. We experimentally demonstrate the generation and cont…
Bimodal Approach for Noise Figures of Merit Evaluation in Quantum-Limited Josephson Traveling Wave Parametric Amplifiers
The advent of ultra-low noise microwave amplifiers revolutionized several research fields demanding quantum-limited technologies. Exploiting a theoretical bimodal description of a linear phase-preserving amplifier, in this contribution we analyze some of the intrinsic properties of a model architecture (i.e., an rf-SQUID based Josephson Traveling Wave Parametric Amplifier) in terms of amplification and noise generation for key case study input states (Fock and coherents). Furthermore, we present an analysis of the output signals generated by the parametric amplification mechanism when thermal noise fluctuations feed the device.