0000000000707678

AUTHOR

P. R. Pujahari

showing 4 related works from this author

Alignment of the ALICE Inner Tracking System with cosmic-ray tracks

2010

ALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurement…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsperspectiveHigh Energy PhisicsDetector alignment and calibration methods (lasers sources particle-beams); Particle tracking detectors (Solid-state detectors); Instrumentation; Mathematical Physics01 natural sciences7. Clean energylaw.inventionHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)lawParticle tracking detectors[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Tracking detectors; High Energy Phisics; Heavy Ion PhysicsDetectors and Experimental TechniquesDetector alignment and calibration methodsNuclear ExperimentInstrumentationphysics.ins-detMathematical PhysicsdetectorsPhysicsLarge Hadron ColliderSolenoidal vector fieldPhysicsDetectorInstrumentation and Detectors (physics.ins-det)particle-beams)collisionsParticle tracking detectors (Solid-state detectors) ; Detector alignment and calibration methods (lasers ; sources ; particle-beams)collaboration; collisions; detector alignment and calibration methods (lasers; sources; particle-beams); detectors; particle tracking detectors (solid-state detectors); performance; perspective; quark-gluon plasmaColliding beam accelerators collisions Pb-Pb collisionsParticle tracking detectors (Solid-state detectors); Detector alignment and calibration methods (lasers sources particle-beams); QUARK-GLUON PLASMAperformancesourcesquark-gluon plasmaDetector alignment and calibration methodFOS: Physical sciencesCosmic ray114 Physical sciencesNuclear physicsTracking detectorsOpticsparticle tracking detectors (solid-state detectors)0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsColliderPixel010308 nuclear & particles physicsbusiness.industryhep-exHeavy Ion Physicsdetector alignment and calibration methods (laserscollaborationQuark–gluon plasmaDetector alignment and calibration methods; Particle tracking detectorsALICE (propellant)business
researchProduct

Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb–Pb collisions at sNN=2.76 TeV

2013

The elliptic, v(2), triangular, v(3), and quadrangular, v(4), azimuthal anisotropic flow coefficients are measured for unidentified charged particles, pions, and (anti-)protons in Pb-Pb collisions at root S-NN = 2.76 TeV with the ALICE detector at the Large Hadron Collider. Results obtained with the event plane and four-particle cumulant methods are reported for the pseudo-rapidity range vertical bar eta vertical bar 8 GeV/c. The small p(T) dependence of the difference between elliptic flow results obtained from the event plane and four-particle cumulant methods suggests a common origin of flow fluctuations up to p(T) = 8 GeV/c. The magnitude of the (anti-)proton elliptic and triangular flo…

PhysicsNuclear and High Energy PhysicsParticle physicsMesonProton010308 nuclear & particles physicsElliptic flowHadron01 natural sciencesCharged particleNuclear physicsBaryonPionAntiproton0103 physical sciencesHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Two-pion Bose-Einstein correlations inppcollisions ats=900  GeV

2010

We report on the measurement of two-pion correlation functions from pp collisions at root s = 900 GeV performed by the ALICE experiment at the Large Hadron Collider. Our analysis shows an increase of the Hanbury Brown-Twiss radius with increasing event multiplicity, in line with other measurements done in particle- and nuclear collisions. Conversely, the strong decrease of the radius with increasing transverse momentum, as observed at the Relativistic Heavy Ion Collider and at Tevatron, is not manifest in our data.

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron ColliderMeson010308 nuclear & particles physicsNuclear TheoryHadronTevatronParticle acceleratorBose–Einstein correlations01 natural scienceslaw.inventionNuclear physicsPionlaw0103 physical sciencesHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsRelativistic Heavy Ion ColliderPhysical Review D
researchProduct

Midrapidity Antiproton-to-Proton Ratio inppCollisons ats=0.9and 7 TeV Measured by the ALICE Experiment

2010

The ratio of the yields of antiprotons to protons in pp collisions has been measured by the ALICE experiment at root s = 0.9 and 7 TeV during the initial running periods of the Large Hadron Collider. The measurement covers the transverse momentum interval 0.45 < p(t) < 1.05 GeV/c and rapidity vertical bar y vertical bar < 0.5. The ratio is measured to be R-vertical bar y vertical bar<0.5 = 0.957 +/- 0.006(stat) +/- 0.0014(syst) at 0.9 Tev and R-vertical bar y vertical bar<0.5 = 0.991 +/- 0.005 +/- 0.014(syst) at 7 TeV and it is independent of both rapidity and transverse momentum. The results are consistent with the conventional model of baryon-number transport and set stringent limits on a…

PhysicsParticle physicsLarge Hadron ColliderProton010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyHadronGeneral Physics and Astronomy01 natural sciences7. Clean energyParticle identificationBaryonNuclear physicsAntiproton0103 physical sciencesHigh Energy Physics::ExperimentRapidityNuclear Experiment010306 general physicsBar (unit)Physical Review Letters
researchProduct