0000000000707845
AUTHOR
R. Martonak
Orthorhombic Phase of Crystalline Polyethylene: A Constant Pressure Path Integral Monte Carlo Study
In this paper we present a Path Integral Monte Carlo (PIMC) simulation of the orthorhombic phase of crystalline polyethylene, using an explicit atom force field with unconstrained bond lengths and angles. This work represents a quantum extension of our recent classical simulation (J. Chem. Phys. 106, 8918 (1997)). It is aimed both at exploring the applicability of the PIMC method on such polymer crystal systems, as well as on a detailed assessment of the importance of quantum effects on different quantities. We used the $NpT$ ensemble and simulated the system at zero pressure in the temperature range 25 - 300 K, using Trotter numbers between 12 and 144. In order to investigate finite-size e…
Orthorhombic Phase of Crystalline Polyethylene: A Monte Carlo Study
In this paper we present a classical Monte Carlo simulation of the orthorhombic phase of crystalline polyethylene, using an explicit atom force field with unconstrained bond lengths and angles and periodic boundary conditions. We used a recently developed algorithm which apart from standard Metropolis local moves employs also global moves consisting of displacements of the center of mass of the whole chains in all three spatial directions as well as rotations of the chains around an axis parallel to the crystallographic c-direction. Our simulations are performed in the NpT ensemble, at zero pressure, and extend over the whole range of temperatures in which the orthorhombic phase is experime…