0000000000708297
AUTHOR
Raivis Skadiņš
Zināšanās bāzētu un korpusā bāzētu metožu kombinētā izmantošanas mašīntulkošanā
Combined Use of Rule-Based and Corpus-Based Methods in Machine Translation ANOTĀCIJA Mašīntulkošanas (MT) sistēmas tiek būvētas izmantojot dažādas metodes (zināšanās un korpusā bāzētas). Zināšanās bāzēta MT tulko tekstu, izmantojot cilvēka rakstītus likumus. Korpusā bāzēta MT izmanto no tulkojumu piemēriem automātiski izgūtus modeļus. Abām metodēm ir gan priekšrocības, gan trūkumi. Šajā darbā tiek meklēta kombināta metode MT kvalitātes uzlabošanai, kombinējot abas metodes. Darbā tiek pētīta metožu piemērotība latviešu valodai, kas ir maza, morfoloģiski bagāta valoda ar ierobežotiem resursiem. Tiek analizētas esošās metodes un tiek piedāvātas vairākas kombinētās metodes. Metodes ir realizēta…
Monolingual and cross-lingual intent detection without training data in target languages
Due to recent DNN advancements, many NLP problems can be effectively solved using transformer-based models and supervised data. Unfortunately, such data is not available in some languages. This research is based on assumptions that (1) training data can be obtained by the machine translating it from another language
Predicting Next Dialogue Action in Emotionally Loaded Conversation
This paper reports on creating a neural network model for prediction of the next action in a dialogue considering conversation history, i.e. entities, context variables and emotion indicators marking emotionally loaded user utterances. Several experiments were performed to see how the information about emotions affects the accuracy of the model. For the purposes of these experiments, a dataset containing 206 dialogs in Latvian in the transport inquiry domain was created containing both neutral and emotionally loaded utterances. To see if the proposed next dialogue action prediction model architecture is suitable for other languages, the original Latvian utterances were translated into Engli…
Combined Use of Rule-Based and Corpus-Based Methods in Machine Translation
ANOTĀCIJA. Mašīntulkošanas (MT) sistēmas tiek būvētas izmantojot dažādas metodes (zināšanās un korpusā bāzētas). Zināšanās bāzēta MT tulko tekstu, izmantojot cilvēka rakstītus likumus. Korpusā bāzēta MT izmanto no tulkojumu piemēriem automātiski izgūtus modeļus. Abām metodēm ir gan priekšrocības, gan trūkumi. Šajā darbā tiek meklēta kombināta metode MT kvalitātes uzlabošanai, kombinējot abas metodes. Darbā tiek pētīta metožu piemērotība latviešu valodai, kas ir maza, morfoloģiski bagāta valoda ar ierobežotiem resursiem. Tiek analizētas esošās metodes un tiek piedāvātas vairākas kombinētās metodes. Metodes ir realizētas un novērtētas, izmantojot gan automātiskas, gan cilvēka novērtēšanas met…