0000000000709062
AUTHOR
Sorin Dumitrescu
On the stability of flat complex vector bundles over parallelizable manifolds
We investigate the flat holomorphic vector bundles over compact complex parallelizable manifolds $G / \Gamma$, where $G$ is a complex connected Lie group and $\Gamma$ is a cocompact lattice in it. The main result proved here is a structure theorem for flat holomorphic vector bundles $E_\rho$ associated to any irreducible representation $\rho : \Gamma \rightarrow \text{GL}(r,{\mathbb C})$. More precisely, we prove that $E_{\rho}$ is holomorphically isomorphic to a vector bundle of the form $E^{\oplus n}$, where $E$ is a stable vector bundle. All the rational Chern classes of $E$ vanish, in particular, its degree is zero. We deduce a stability result for flat holomorphic vector bundles $E_{\r…
Variétés complexes, feuilletages, uniformisation
International audience