0000000000709787
AUTHOR
Becker
ChemInform Abstract: Au+ n-Induced Decomposition of N2O.
Ground-state properties of neutron-deficient platinum isotopes
The hyperfine structure splitting and the isotope shift in the λ=266 nm transition of Pt isotopes within the mass range 183 ≦A≦ 198 have been determined by Resonance Ionization Mass Spectroscopy (RIMS) in combination with Pulsed-Laser Induced Desorption (PLID). The Pt isotopes were obtained at the on-line isotope separator ISOLDE-3/CERN as daugthers of the primarily produced Hg isotopes. Magnetic moments, quadrupole moments, and changes in the mean-square charge radii are deduced and compared with results of a particle-triaxial rotor model and mean field calculations. Good agreement with experimental data (including nuclear level schemes and transition probabilities) can only be obtained if…
The charge radii of $^{198}$Pt - $^{183}$Pt
The changes of the mean-square charge radii have been measured for198Pt-183Pt by means of resonance ionization mass spectroscopy (RIMS) at the new on-line isotope separator ISOLDE-3/CERN. As in the case of the neighbouring isotopes of Au and Hg, a strong nuclear deformation of ¦β2¦ −-0.24 is reached at the neutron mid-shell nucleus183Pt, but no indication for a sharp shape transition is observed from the study of the isotope shifts.