0000000000710059
AUTHOR
Bernhard Franczak
First isochronous mass spectrometry at the experimental storage ring ESR
Short-lived exotic nuclei can be produced and separated with the high-energy secondary nuclear beam facility FRS at GSI. These nuclides can be injected and stored in the storage ring ESR. The lower lifetime limit of the presently existing methods for mass measurements on these nuclides at the ESR is about a few seconds. We have developed and investigated an isochronous operational mode of the ESR, that makes mass measurements of nuclides with lifetimes down to a few ls feasible. It has been commissioned in experiments using long-lived nuclides with known masses. A mass resolving power of about 150 000 has been achieved in a "rst pilot experiment. A suitable detector system has been implemen…
Simultaneous Measurement ofβ−Decay to Bound and Continuum Electron States
We report the first measurement of a ratio {lambda}{sub {beta}{sub b}}/{lambda}{sub {beta}{sub c}} of bound-state ({lambda}{sub {beta}{sub b}}) and continuum-state ({lambda}{sub {beta}{sub c}}) {beta}{sup -}-decay rates for the case of bare {sup 207}Tl{sup 81+} ions. These ions were produced at the GSI fragment separator FRS by projectile fragmentation of a {sup 208}Pb beam. After in-flight separation with the B{rho}-{delta}E-B{rho} method, they were injected into the experimental storage-ring ESR at an energy of 400.5A MeV, stored, and electron cooled. The number of both the {sup 207}Tl{sup 81+} ions and their bound-state {beta}{sup -}-decay daughters, hydrogenlike {sup 207}Pb{sup 81+} ion…
The Super-FRS Project at GSI
The GSI projectile fragment separator FRS has demonstrated with many pioneering experiments the research potential of in-flight separators at relativistic energies. Although the present facility has contributed much to the progress in the field of nuclear structure physics, major improvements are desirable in the future. The characteristics of the proposed next-generation facility at GSI, the Super-FRS, will be presented and compared to other projects. The Super-FRS is a large-acceptance superconducting fragment separator followed by different experimental branches including a combination with a new storage-cooler ring system. This system consists of a collector ring (CR) and a new experime…