0000000000710084

AUTHOR

A. Johner

Scale-free static and dynamical correlations in melts of monodisperse and Flory-distributed homopolymers: A review of recent bond-fluctuation model studies

It has been assumed until very recently that all long-range correlations are screened in three-dimensional melts of linear homopolymers on distances beyond the correlation length $\xi$ characterizing the decay of the density fluctuations. Summarizing simulation results obtained by means of a variant of the bond-fluctuation model with finite monomer excluded volume interactions and topology violating local and global Monte Carlo moves, we show that due to an interplay of the chain connectivity and the incompressibility constraint, both static and dynamical correlations arise on distances $r \gg \xi$. These correlations are scale-free and, surprisingly, do not depend explicitly on the compres…

research product

Frictional Forces between Strongly Compressed, Nonentangled Polymer Brushes: Molecular Dynamics Simulations and Scaling Theory

By means of molecular dynamics simulations and scaling theory we study the response of opposing polymer brushes to constant shear motion under good solvent conditions. Model systems that contain explicit solvent molecules (Lennard-Jones dimers) are compared to solvent-free systems while varying of the distance between the grafted layers and their molecular parameters, chain length and grafting density. Our study reveals a power-law dependence of macroscopic transport properties on the Weissenberg number, W, beyond linear response. For instance, we find that the kinetic friction constant scales as μ ∼ W0.57 for large values of W. We develop a scaling theory that describes our data and previo…

research product