0000000000710466

AUTHOR

F. K��ppeler

The thermal neutron capture cross section of the radioactive isotope $^{60}$Fe

50% of the heavy element abundances are produced via slow neutron capture reactions in different stellar scenarios. The underlying nucleosynthesis models need the input of neutron capture cross sections. One of the fundamental signatures for active nucleosynthesis in our galaxy is the observation of long-lived radioactive isotopes, such as $^{60}$Fe with a half-life of $2.60\times10^6$ yr. To reproduce this $\gamma$-activity in the universe, the nucleosynthesis of $^{60}$Fe has to be understood reliably. A $^{60}$Fe sample produced at the Paul-Scherrer-Institut was activated with thermal and epithermal neutrons at the research reactor at the Johannes Gutenberg-Universit\"at Mainz. The therm…

research product

Experimental neutron capture data of 58Ni from the CERN n_TOF facility

The $^{58}$Ni $(n,\gamma)$ cross section has been measured at the neutron time of flight facility n_TOF at CERN, in the energy range from 27 meV up to 400 keV. In total, 51 resonances have been analyzed up to 122 keV. Maxwellian averaged cross sections (MACS) have been calculated for stellar temperatures of kT$=$5-100 keV with uncertainties of less than 6%, showing fair agreement with recent experimental and evaluated data up to kT = 50 keV. The MACS extracted in the present work at 30 keV is 34.2$\pm$0.6$_\mathrm{stat}\pm$1.8$_\mathrm{sys}$ mb, in agreement with latest results and evaluations, but 12% lower relative to the recent KADoNIS compilation of astrophysical cross sections. When in…

research product