0000000000711158

AUTHOR

Eric Moulines

showing 2 related works from this author

An Adaptive Parallel Tempering Algorithm

2013

Parallel tempering is a generic Markov chainMonteCarlo samplingmethod which allows good mixing with multimodal target distributions, where conventionalMetropolis- Hastings algorithms often fail. The mixing properties of the sampler depend strongly on the choice of tuning parameters, such as the temperature schedule and the proposal distribution used for local exploration. We propose an adaptive algorithm with fixed number of temperatures which tunes both the temperature schedule and the parameters of the random-walk Metropolis kernel automatically. We prove the convergence of the adaptation and a strong law of large numbers for the algorithm under general conditions. We also prove as a side…

Statistics and ProbabilityScheduleMathematical optimizationta112Adaptive algorithmErgodicityta111Mixing (mathematics)Law of large numbersKernel (statistics)Convergence (routing)Discrete Mathematics and CombinatoricsParallel temperingStatistics Probability and UncertaintyAlgorithmMathematicsJournal of Computational and Graphical Statistics
researchProduct

Convergence of Markovian Stochastic Approximation with discontinuous dynamics

2016

This paper is devoted to the convergence analysis of stochastic approximation algorithms of the form $\theta_{n+1} = \theta_n + \gamma_{n+1} H_{\theta_n}({X_{n+1}})$, where ${\left\{ {\theta}_n, n \in {\mathbb{N}} \right\}}$ is an ${\mathbb{R}}^d$-valued sequence, ${\left\{ {\gamma}_n, n \in {\mathbb{N}} \right\}}$ is a deterministic stepsize sequence, and ${\left\{ {X}_n, n \in {\mathbb{N}} \right\}}$ is a controlled Markov chain. We study the convergence under weak assumptions on smoothness-in-$\theta$ of the function $\theta \mapsto H_{\theta}({x})$. It is usually assumed that this function is continuous for any $x$; in this work, we relax this condition. Our results are illustrated by c…

Control and OptimizationStochastic approximationMarkov processMathematics - Statistics Theorydiscontinuous dynamicsStatistics Theory (math.ST)Stochastic approximation01 natural sciencesCombinatorics010104 statistics & probabilitysymbols.namesake[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]Convergence (routing)FOS: Mathematics0101 mathematics62L20state-dependent noiseComputingMilieux_MISCELLANEOUSMathematicsta112SequenceconvergenceApplied Mathematicsta111010102 general mathematicsFunction (mathematics)[STAT.TH]Statistics [stat]/Statistics Theory [stat.TH]16. Peace & justice[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulationcontrolled Markov chainMarkovian stochastic approximationsymbolsStochastic approximat
researchProduct