0000000000711158

AUTHOR

Eric Moulines

An Adaptive Parallel Tempering Algorithm

Parallel tempering is a generic Markov chainMonteCarlo samplingmethod which allows good mixing with multimodal target distributions, where conventionalMetropolis- Hastings algorithms often fail. The mixing properties of the sampler depend strongly on the choice of tuning parameters, such as the temperature schedule and the proposal distribution used for local exploration. We propose an adaptive algorithm with fixed number of temperatures which tunes both the temperature schedule and the parameters of the random-walk Metropolis kernel automatically. We prove the convergence of the adaptation and a strong law of large numbers for the algorithm under general conditions. We also prove as a side…

research product

Convergence of Markovian Stochastic Approximation with discontinuous dynamics

This paper is devoted to the convergence analysis of stochastic approximation algorithms of the form $\theta_{n+1} = \theta_n + \gamma_{n+1} H_{\theta_n}({X_{n+1}})$, where ${\left\{ {\theta}_n, n \in {\mathbb{N}} \right\}}$ is an ${\mathbb{R}}^d$-valued sequence, ${\left\{ {\gamma}_n, n \in {\mathbb{N}} \right\}}$ is a deterministic stepsize sequence, and ${\left\{ {X}_n, n \in {\mathbb{N}} \right\}}$ is a controlled Markov chain. We study the convergence under weak assumptions on smoothness-in-$\theta$ of the function $\theta \mapsto H_{\theta}({x})$. It is usually assumed that this function is continuous for any $x$; in this work, we relax this condition. Our results are illustrated by c…

research product