Numerical study of soliton stability, resolution and interactions in the 3D Zakharov–Kuznetsov equation
International audience; We present a detailed numerical study of solutions to the Zakharov-Kuznetsov equation in three spatial dimensions. The equation is a three-dimensional generalization of the Korteweg-de Vries equation, though, not completely integrable. This equation is L-2-subcritical, and thus, solutions exist globally, for example, in the H-1 energy space.We first study stability of solitons with various perturbations in sizes and symmetry, and show asymptotic stability and formation of radiation, confirming the asymptotic stability result in Farah et al. (0000) for a larger class of initial data. We then investigate the solution behavior for different localizations and rates of de…