0000000000711227

AUTHOR

Till Lenz

showing 4 related works from this author

Zero-field magnetometry based on nitrogen-vacancy ensembles in diamond

2018

Ensembles of nitrogen-vacancy (NV) centers in diamonds are widely utilized for magnetometry, magnetic-field imaging and magnetic-resonance detection. They have not been used for magnetometry at zero ambient field because Zeeman sublevels lose first-order sensitivity to magnetic fields as they are mixed due to crystal strain or electric fields. In this work, we realize a zero-field (ZF) magnetometer using polarization-selective microwave excitation in a 12C-enriched HPHT crystal sample. We employ circularly polarized microwaves to address specific transitions in the optically detected magnetic resonance and perform magnetometry with a noise floor of 250 pT/Hz^(1/2). This technique opens the …

Materials scienceMagnetometerGeneral Physics and Astronomychemistry.chemical_elementFOS: Physical sciences02 engineering and technologyApplied Physics (physics.app-ph)engineering.material01 natural sciences010305 fluids & plasmaslaw.inventionCrystalsymbols.namesakeZero fieldlawAmbient fieldVacancy defectElectric field0103 physical sciences010306 general physicsQuantum PhysicsZeeman effectCondensed matter physicsZero (complex analysis)DiamondPhysics - Applied Physics021001 nanoscience & nanotechnologyNitrogenMagnetic fieldchemistryengineeringsymbols0210 nano-technologyQuantum Physics (quant-ph)Ground stateMicrowaveExcitationSymposium Latsis 2019 on Diamond Photonics - Physics, Technologies and Applications
researchProduct

Color centers in diamond as novel probes of superconductivity

2018

Magnetic imaging using color centers in diamond through both scanning and wide-field methods offers a combination of unique capabilities for studying superconductivity, for example, enabling accurate vector magnetometry at high temperature or high pressure, with spatial resolution down to the nanometer scale. The paper briefly reviews various experimental modalities in this rapidly developing nascent field and provides an outlook towards possible future directions.

010302 applied physicsSuperconductivityMaterials scienceField (physics)Condensed Matter - Mesoscale and Nanoscale PhysicsMagnetometerCondensed Matter - SuperconductivityDiamondFOS: Physical sciencesNanotechnologyengineering.materialCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic Materialslaw.inventionSuperconductivity (cond-mat.supr-con)Magnetic imaginglawHigh pressure0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)engineering010306 general physicsImage resolution
researchProduct

Wide-Field Imaging of Superconductor Vortices with Electron Spins in Diamond

2018

Understanding the mechanisms behind high-$T_{c}$ Type-II superconductors (SC) is still an open task in condensed matter physics. One way to gain further insight into the microscopic mechanisms leading to superconductivity is to study the magnetic properties of the SC in detail, for example by studying the properties of vortices and their dynamics. In this work we describe a new method of wide-field imaging magnetometry using nitrogen-vacancy (NV) centers in diamond to image vortices in an yttrium barium copper oxide (YBCO) thin film. We demonstrate quantitative determination of the magnetic field strength of the vortex stray field, the observation of vortex patterns for different cooling fi…

Magnetic domainMagnetismFOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technologyElectronengineering.material01 natural sciencesSuperconductivity (cond-mat.supr-con)Condensed Matter::Materials ScienceCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences010306 general physicsPhysicsSuperconductivityCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsSpinsCondensed Matter - SuperconductivitySkyrmionDiamond021001 nanoscience & nanotechnologyMagnetic fieldengineering0210 nano-technologyPhysical Review Applied
researchProduct

Imaging Topological Spin Structures Using Light-Polarization and Magnetic Microscopy

2020

We present an imaging modality that enables detection of magnetic moments and their resulting stray magnetic fields. We use wide-field magnetic imaging that employs a diamond-based magnetometer and has combined magneto-optic detection (e.g. magneto-optic Kerr effect) capabilities. We employ such an instrument to image magnetic (stripe) domains in multilayered ferromagnetic structures.

Materials scienceKerr effectMagnetometer530 PhysicsGeneral Physics and AstronomyFOS: Physical sciencesPhysics::Optics02 engineering and technologyApplied Physics (physics.app-ph)01 natural scienceslaw.inventionOpticslawMagnetic imaging0103 physical sciencesMicroscopyddc:530Physics::Atomic Physics010306 general physicsSpin (physics)Condensed Matter - Materials ScienceMagnetic momentbusiness.industryMaterials Science (cond-mat.mtrl-sci)Physics - Applied Physics021001 nanoscience & nanotechnology530 PhysikMagnetic fieldFerromagnetism0210 nano-technologybusiness
researchProduct