0000000000711227

AUTHOR

Till Lenz

Zero-field magnetometry based on nitrogen-vacancy ensembles in diamond

Ensembles of nitrogen-vacancy (NV) centers in diamonds are widely utilized for magnetometry, magnetic-field imaging and magnetic-resonance detection. They have not been used for magnetometry at zero ambient field because Zeeman sublevels lose first-order sensitivity to magnetic fields as they are mixed due to crystal strain or electric fields. In this work, we realize a zero-field (ZF) magnetometer using polarization-selective microwave excitation in a 12C-enriched HPHT crystal sample. We employ circularly polarized microwaves to address specific transitions in the optically detected magnetic resonance and perform magnetometry with a noise floor of 250 pT/Hz^(1/2). This technique opens the …

research product

Color centers in diamond as novel probes of superconductivity

Magnetic imaging using color centers in diamond through both scanning and wide-field methods offers a combination of unique capabilities for studying superconductivity, for example, enabling accurate vector magnetometry at high temperature or high pressure, with spatial resolution down to the nanometer scale. The paper briefly reviews various experimental modalities in this rapidly developing nascent field and provides an outlook towards possible future directions.

research product

Wide-Field Imaging of Superconductor Vortices with Electron Spins in Diamond

Understanding the mechanisms behind high-$T_{c}$ Type-II superconductors (SC) is still an open task in condensed matter physics. One way to gain further insight into the microscopic mechanisms leading to superconductivity is to study the magnetic properties of the SC in detail, for example by studying the properties of vortices and their dynamics. In this work we describe a new method of wide-field imaging magnetometry using nitrogen-vacancy (NV) centers in diamond to image vortices in an yttrium barium copper oxide (YBCO) thin film. We demonstrate quantitative determination of the magnetic field strength of the vortex stray field, the observation of vortex patterns for different cooling fi…

research product

Imaging Topological Spin Structures Using Light-Polarization and Magnetic Microscopy

We present an imaging modality that enables detection of magnetic moments and their resulting stray magnetic fields. We use wide-field magnetic imaging that employs a diamond-based magnetometer and has combined magneto-optic detection (e.g. magneto-optic Kerr effect) capabilities. We employ such an instrument to image magnetic (stripe) domains in multilayered ferromagnetic structures.

research product