A Random Trajectory Approach for the Development of Nonstationary Channel Models Capturing Different Scales of Fading
This paper introduces a new approach to developing stochastic nonstationary channel models, the randomness of which originates from a random trajectory of the mobile station (MS) rather than from the scattering area. The new approach is employed by utilizing a random trajectory model based on the primitives of Brownian fields (BFs), whereas the position of scatterers can be generated from an arbitrarily 2-D distribution function. The employed trajectory model generates random paths along which the MS travels from a given starting point to a fixed predefined destination point. To capture the path loss, the gain of each multipath component is modeled by a negative power law applied to the tra…