0000000000711412
AUTHOR
Franco Nori
Optomechanical Two-Photon Hopping
The hopping mechanism plays a key role in collective phenomena emerging in many-body physics. The ability to create and control systems that display this feature is important for next generation quantum technologies. Here we study two cavities separated by a vibrating two-sided perfect mirror and show that, within currently available experimental parameters, this system displays photon-pair hopping between the two electromagnetic resonators. In particular, the two-photon hopping is not due to tunneling, but rather to higher order resonant processes. Starting from the classical problem, where the vibrating mirror perfectly separates the two sides of the cavity, we quantize the system and the…
Output Field-Quadrature Measurements and Squeezing in Ultrastrong Cavity-QED
We study the squeezing of output quadratures of an electro-magnetic field escaping from a resonator coupled to a general quantum system with arbitrary interaction strengths. The generalized theoretical analysis of output squeezing proposed here is valid for all the interaction regimes of cavity-quantum electrodynamics: from the weak to the strong, ultrastrong, and deep coupling regimes. For coupling rates comparable or larger then the cavity resonance frequency, the standard input–output theory for optical cavities fails to calculate the variance of output field-quadratures and predicts a non-negligible amount of output squeezing, even if the system is in its ground state. Here we show that…