0000000000711606
AUTHOR
Jaideep S. Kulkarni
Conductive films of ordered nanowire arrays
peer-reviewed High-density, ordered arrays of germanium nanowires have been synthesised within the pores of mesoporous thin films (MTFs) and anodized aluminium oxide (AAO) matrices using a supercritical fluid solution-phase inclusion technique. Conductive atomic force microscopy (C-AFM) was utilised to study the electrical properties of the nanowires within these arrays. Nearly all of the semiconductor nanowires contained within the AAO substrates were found to be conducting. Additionally, each individual nanowire within the substrate possessed similar electrical properties demonstrating that the nanowires are continuous and reproducible within each pore. C-AFM was also able to probe the co…
Synthesis and characterization of highly ordered cobalt-magnetite nanocable arrays.
Magnetically tunable, high-density arrays of coaxial nanocables within anodic aluminum oxide (AAO) membranes have been synthesized. The nanocables consist of magnetite nanowires surrounded by cobalt nanotube sheaths and cobalt nanowires surrounded by magnetite nanotube sheaths. These materials are a combination of separate hard (Co) and soft (Fe3O4) magnetic materials in a single nanocable structure. The combination of two or more magnetic materials in such a radial structure is seen as a very powerful tool for the future fabrication of magnetoresistive, spin-valve and ultrafast spin-injection devices with nonplanar geometries. The nanocable arrays were prepared using a supercritical-fluid …
Temperature dependence of magnetization reversal in Co and Fe3O4 nanowire arrays
Abstract In this paper, we investigate the magnetization reversal of cobalt and magnetite nanowires, 4 nm in diameter, synthesized within the pores of mesoporous silica thin films. A SQUID magnetometer was used to study the magnetic properties of the nanowire arrays over a broad temperature interval, T= 1.8–300 K. The magnetization reversal process was found to be strongly temperature dependent. While a coherent rotation may occur at room temperature, a process involving the formation of domain structures takes place as the temperature decreases down to 1.8 K.