0000000000711606

AUTHOR

Jaideep S. Kulkarni

showing 3 related works from this author

Conductive films of ordered nanowire arrays

2004

peer-reviewed High-density, ordered arrays of germanium nanowires have been synthesised within the pores of mesoporous thin films (MTFs) and anodized aluminium oxide (AAO) matrices using a supercritical fluid solution-phase inclusion technique. Conductive atomic force microscopy (C-AFM) was utilised to study the electrical properties of the nanowires within these arrays. Nearly all of the semiconductor nanowires contained within the AAO substrates were found to be conducting. Additionally, each individual nanowire within the substrate possessed similar electrical properties demonstrating that the nanowires are continuous and reproducible within each pore. C-AFM was also able to probe the co…

Materials scienceAnodizingbusiness.industryNanowirechemistry.chemical_elementNanotechnologyGermaniumGeneral ChemistryConductive atomic force microscopySubstrate (electronics)MTFsgermaniumSemiconductorchemistrynanowiresMaterials ChemistryThin filmMesoporous materialbusiness
researchProduct

Synthesis and characterization of highly ordered cobalt-magnetite nanocable arrays.

2006

Magnetically tunable, high-density arrays of coaxial nanocables within anodic aluminum oxide (AAO) membranes have been synthesized. The nanocables consist of magnetite nanowires surrounded by cobalt nanotube sheaths and cobalt nanowires surrounded by magnetite nanotube sheaths. These materials are a combination of separate hard (Co) and soft (Fe3O4) magnetic materials in a single nanocable structure. The combination of two or more magnetic materials in such a radial structure is seen as a very powerful tool for the future fabrication of magnetoresistive, spin-valve and ultrafast spin-injection devices with nonplanar geometries. The nanocable arrays were prepared using a supercritical-fluid …

NanotubeFabricationMaterials scienceMagnetoresistanceSurface PropertiesNanowirechemistry.chemical_elementNanotechnologylaw.inventionBiomaterialschemistry.chemical_compoundMagneticsMicroscopy Electron TransmissionX-Ray DiffractionlawAluminum OxideNanotechnologyGeneral Materials ScienceParticle SizeMagnetiteNanotubesNanowiresMagnetic storageTemperatureGeneral ChemistryCobaltFerrosoferric OxidechemistryNanoparticlesCoaxialCobaltBiotechnologySmall (Weinheim an der Bergstrasse, Germany)
researchProduct

Temperature dependence of magnetization reversal in Co and Fe3O4 nanowire arrays

2005

Abstract In this paper, we investigate the magnetization reversal of cobalt and magnetite nanowires, 4 nm in diameter, synthesized within the pores of mesoporous silica thin films. A SQUID magnetometer was used to study the magnetic properties of the nanowire arrays over a broad temperature interval, T= 1.8–300 K. The magnetization reversal process was found to be strongly temperature dependent. While a coherent rotation may occur at room temperature, a process involving the formation of domain structures takes place as the temperature decreases down to 1.8 K.

Materials scienceCondensed matter physicsMagnetometerNanowirechemistry.chemical_elementMesoporous silicaCondensed Matter PhysicsElectronic Optical and Magnetic Materialslaw.inventionchemistry.chemical_compoundTransition metalchemistrylawThin filmPorous mediumCobaltMagnetiteJournal of Magnetism and Magnetic Materials
researchProduct