0000000000711953

AUTHOR

O. Pechenizkiy

showing 1 related works from this author

Class Noise and Supervised Learning in Medical Domains: The Effect of Feature Extraction

2006

Inductive learning systems have been successfully applied in a number of medical domains. It is generally accepted that the highest accuracy results that an inductive learning system can achieve depend on the quality of data and on the appropriate selection of a learning algorithm for the data. In this paper we analyze the effect of class noise on supervised learning in medical domains. We review the related work on learning from noisy data and propose to use feature extraction as a pre-processing step to diminish the effect of class noise on the learning process. Our experiments with 8 medical datasets show that feature extraction indeed helps to deal with class noise. It clearly results i…

Computer sciencebusiness.industryActive learning (machine learning)Supervised learningFeature extractionMulti-task learningPattern recognitionSemi-supervised learningMachine learningcomputer.software_genreNoiseUnsupervised learningArtificial intelligenceInstance-based learningbusinesscomputer19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)
researchProduct