0000000000714191

AUTHOR

Hong-hao Tu

0000-0003-0047-6087

Symmetry-protected intermediate trivial phases in quantum spin chains

Symmetry-protected trivial (SPt) phases of matter are the product-state analogue of symmetry-protected topological (SPT) phases. This means, SPt phases can be adiabatically connected to a product state by some path that preserves the protecting symmetry. Moreover, SPt and SPT phases can be adiabatically connected to each other when interaction terms that break the symmetries protecting the SPT order are added in the Hamiltonian. It is also known that spin-1 SPT phases in quantum spin chains can emerge as effective intermediate phases of spin-2 Hamiltonians. In this paper we show that a similar scenario is also valid for SPt phases. More precisely, we show that for a given spin-2 quantum cha…

research product

All spin-1 topological phases in a single spin-2 chain

Here we study the emergence of different Symmetry-Protected Topological (SPT) phases in a spin-2 quantum chain. We consider a Heisenberg-like model with bilinear, biquadratic, bicubic, and biquartic nearest-neighbor interactions, as well as uniaxial anisotropy. We show that this model contains four different effective spin-1 SPT phases, corresponding to different representations of the $(\mathbb{Z}_2 \times \mathbb{Z}_2) + T$ symmetry group, where $\mathbb{Z}_2$ is some $\pi$-rotation in the spin internal space and $T$ is time-reversal. One of these phases is equivalent to the usual spin-1 Haldane phase, while the other three are different but also typical of spin-1 systems. The model also …

research product