0000000000714418

AUTHOR

Pieter Gypens

showing 1 related works from this author

Nanomagnetic Self-Organizing Logic Gates

2021

The end of Moore's law for CMOS technology has prompted the search for low-power computing alternatives, resulting in several promising proposals based on magnetic logic[1-8]. One approach aims at tailoring arrays of nanomagnetic islands in which the magnetostatic interactions constrain the equilibrium orientation of the magnetization to embed logical functionalities[9-12]. Despite the realization of several proofs of concepts of such nanomagnetic logic[13-15], it is still unclear what the advantages are compared to the widespread CMOS designs, due to their need for clocking[16, 17] and/or thermal annealing [18,19] for which fast convergence to the ground state is not guaranteed. In fact, i…

Class (computer programming)Technology and EngineeringCondensed Matter - Mesoscale and Nanoscale PhysicsComputer scienceSIGNAL (programming language)FOS: Physical sciencesGeneral Physics and AstronomyNAND gateNonlinear Sciences - Adaptation and Self-Organizing SystemsPhysics and AstronomyCMOSComputer engineeringLogic gateSIMULATIONMesoscale and Nanoscale Physics (cond-mat.mes-hall)Path (graph theory)Reversible computingddc:530Unconventional computingAdaptation and Self-Organizing Systems (nlin.AO)Hardware_LOGICDESIGN
researchProduct