Latent heat flux variability and response to drought stress of black poplar: A multi-platform multi-sensor remote and proximal sensing approach to relieve the data scarcity bottleneck
Abstract High-throughput mapping of latent heat flux (λET) is critical to efforts to optimize water resources management and to accelerate forest tree breeding for improved drought tolerance. Ideally, investigation of the energy response at the tree level may promote tailored irrigation strategies and, thus, maximize crop biomass productivity. However, data availability is limited and planning experimental campaigns in the field can be highly operationally complex. To this end, a multi-platform multi-sensor observational approach is herein developed to dissect the λET signature of a black poplar (Populus nigra) breeding population (“POP6”) at the canopy level. POP6 comprised more than 4600 …