0000000000714469

AUTHOR

Aiting Yang

Lysyl Oxidase (LOX) Family Members: Rationale and Their Potential as Therapeutic Targets for Liver Fibrosis.

The cross-linking of structural extracellular matrix (ECM) components, especially fibrillar collagens and elastin, is strongly implicated in fibrosis progression and resistance to fibrosis reversal. Lysyl oxidase family members (LOX and LOXL1 [lysyl oxidase-like 1], LOXL2 [lysyl oxidase-like 2], LOXL3 [lysyl oxidase-like 3], and LOXL4 [lysyl oxidase like 4]) are extracellular copper-dependent enzymes that play a key role in ECM cross-linking, but have also other intracellular functions relevant to fibrosis and carcinogenesis. Although the expression of most LOX family members is elevated in experimental liver fibrosis of diverse etiologies, their individual contribution to fibrosis is incom…

research product

α-Mannosyl-Functionalized Cationic Nanohydrogel Particles for Targeted Gene Knockdown in Immunosuppressive Macrophages

Immunosuppressive M2 macrophages govern the immunophathogenic micromilieu in many severe diseases including cancer or fibrosis, thus, their re-polarization through RNA interference is a promising concept to support combinatorial therapies. For targeted siRNA delivery, however, safe and stable carriers are required that manage cell specific transport to M2 macrophages. Here, siRNA-loaded cationic nanogels are reported with α-mannosyl decorated surfaces that target and modify M2 macrophages selectively. Via amphiphilic precursor block copolymers bearing one single α-mannosyl moiety at their chain end mannosylated cationic nanohydrogel particles (ManNP) were obtained of 20 nm diameter determin…

research product