0000000000714815

AUTHOR

Mario J. Simirgiotis

Valorization of Wastewater from Table Olives: NMR Identification of Antioxidant Phenolic Fraction and Microwave Single-Phase Reaction of Sugary Fraction

The table olive industry is producing a huge amount of wastewater, which is a post-processing cost and an environmental concern. The present study aims to valorize this processing by-product to obtain a value-added product, thereby enhancing resource efficiency and contributing to achieving sustainable development goals (SDGs). In this sense, a chemical reaction-based platform was developed to obtain valuable components, such as levulinic acid (LA) and 5-hydromethylfurfural (HMF). The products were then analyzed using NMR identification of the antioxidant phenolic fraction and microwave single-phase reaction of the sugary fraction. According to the results, the highest concentration of phen…

research product

Optimization of Polyphenols' Recovery from Purple Corn Cobs Assisted by Infrared Technology and Use of Extracted Anthocyanins as a Natural Colorant in Pickled Turnip

An ecofriendly extraction technology using infrared (IR) irradiation Ired-Irrad® was applied to purple corn cobs to enhance polyphenol recovery for the first time. The IR extraction efficiency was compared to that of the water bath (WB) method. Response surface methodology (RSM) using a central composite design was conducted to determine the effect of the experimental conditions (extraction time and treatment temperature) and their interactions on the total polyphenol and anthocyanin yields. Optimal extraction of total phenolic compounds (37 mg GAE/g DM) and total monomeric anthocyanins (14 mg C3G/g DM) were obtained at 63 °C for 77 min using IR as an extraction technique and water as a sol…

research product

Table olive wastewater as a potential source of biophenols for valorization : a mini review

The table olive industry generates high amounts of wastewater annually during the alkaline treatment, fermentation, and washing steps of olives. High conductivity and salt content, as well as the high organic and biophenol contents of these waters, is a worldwide problem, especially in the Mediterranean region, which is the major table olive producing area. There is a wide variety of bioactives found in wastewater derived from table olive processing. The main compounds of table olive wastewater, such as those derived from phenolic, hydrocarbon, and sugar fractions, can be recovered and reused. In this review, the table olive manufacturing processes and the volumes and composition of wastewa…

research product