0000000000715101
AUTHOR
Donatella Caniani
A Graphical User Interface as a DSS Tool for GHG Emission Estimation from Water Resource Recovery Facilities
A Grafical User Interface (GUI) for the greenhouse gas (GHG) emissions from WWTPs based on four models aimed at quantifying the gas emissions from the aerated tanks (i.e. CAS and MBR reactor), aerobic digesters, secondary clarifiers and anaerobic digesters have been englobed in a GUI in order to provide a valid decision support system (DSS) to the practitioners. The GUI allows to estimate such emissions for the different WWTP phases considered. The GUI has been developed on MATLAB platform and provides as output the GHG emissions in terms of CO2 and N2O fluxes.
Toward a New Plant-Wide Experimental and Modeling Approach for Reduction of Greenhouse Gas Emission from Wastewater Treatment Plants
Mechanisms causing greenhouse gas (GHG) emission in wastewater treatment plants are of great interest among researchers, encouraging the development of new methods for wastewater management. Wastewater treatment plants (WWTPs) emit three major greenhouse gases during the treatment processes: CO2, CH4, and N2O. Additional amounts of CO2 and CH4 are produced during energy consumption, which can be considered an indirect source of GHGs. Recently, several efforts have been undertaken to assess GHGs from WWTPs, with particular attention paid to the N2O assessment due to its high warming potential (300 times stronger than CO2). This study proposes an integrated model platform for WWTP simulation,…
Dewaterability of CAS and MBR Sludge: Effect of Biological Stability and EPS Composition
The dewaterability of sludge from two conventional activated sludge (CAS) and three membrane bioreactor (MBR)-based wastewater treatment plants is investigated prior to and after anaerobic digestion. The concentration and composition of extracellular polymeric substances (EPS) mostly affect the dewaterability of all raw sludge samples. Better sludge dewaterability is observed when the concentration of proteins, carbohydrates, uronic acids, and humic acids is below approximately 400, 250, 200, and 40 mg/L, respectively. In contrast, the specific resistance to filtration (SRF) increases in the sludge samples with a higher EPS concentration. The MBR results in a lower EPS production and a uron…
Towards A New Decision Support System for Design, Management and Operation of Wastewater Treatment Plants for the Reduction of Greenhouse Gases Emission
The increasing attention paid to the environment has led to a reduction in the emissions from wastewater treatment plants (WWTPs). Moreover, the increasing interest in the greenhouse gas (GHG) emissions from WWTPs suggests that we reconsider the traditional tools used for designing and managing WWTPs. Indeed, nitrous oxide, carbon dioxide and methane can be emitted from wastewater treatment, significantly contributing to the greenhouse gas (GHG) footprint. The reduction of energy consumption as well as GHG emission are of particular concern for large WWTPs which treat the majority of wastewater in terms of both volume and pollution load. Nowadays, there is an increasing need to develop new …
A novel comprehensive procedure for estimating greenhouse gas emissions from water resource recovery facilities
The emissions of the major greenhouse gases (GHGs), i.e. carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from water resource recovery facilities (WRRFs) are of increasing concern in the water industry. In order to produce useful and comparable information for monitoring, assessing, and reporting GHG emissions from WRRFs, there is a need for a generally accepted methodology for their quantification. This paper aims at proposing the first protocol for monitoring and accounting for GHG emissions from WRRFs, taking into account both direct and indirect internal emissions and focusing the attention on plant sections known to be primarily responsible for GHG emissions (i.e. oxidation…
Greenhouse gases from wastewater treatment — A review of modelling tools
Nitrous oxide, carbon dioxide and methane are greenhouse gases (GHG) emitted from wastewater treatment that contribute to its carbon footprint. As a result of the increasing awareness of GHG emissions from wastewater treatment plants (WWTPs), new modelling, design, and operational tools have been developed to address and reduce GHG emissions at the plant-wide scale and beyond. This paper reviews the state-of-the-art and the recently developed tools used to understand and manage GHG emissions from WWTPs, and discusses open problems and research gaps. The literature review reveals that knowledge on the processes related to N2O formation, especially due to autotrophic biomass, is still incompl…
A new plant wide modelling approach for the reduction of greenhouse Gas emission from wastewater treatment plants
Recent studies about greenhouse gas (GHG) emissions show that sewer collection systems and wastewater treatment plants (WWTPs) are anthropogenic GHG potential sources. Therefore, they contribute to the climate change and air pollution. This increasing interest towards climate change has led to the development of new tools for WWTP design and management. This paper presents the first results of a research project aiming at setting-up an innovative mathematical model platform for the design and management of WWTPs. More specifically, the study presents the project’s strategy aimed at setting-up a plant-wide mathematical model which can be used as a tool for reducing/controlling GHG from WWTP.…