0000000000715465

AUTHOR

Jean-luc Starck

Morphology of the galaxy distribution from wavelet denoising

We have developed a method based on wavelets to obtain the true underlying smooth density from a point distribution. The goal has been to reconstruct the density field in an optimal way ensuring that the morphology of the reconstructed field reflects the true underlying morphology of the point field which, as the galaxy distribution, has a genuinely multiscale structure, with near-singular behavior on sheets, filaments and hotspots. If the discrete distributions are smoothed using Gaussian filters, the morphological properties tend to be closer to those expected for a Gaussian field. The use of wavelet denoising provide us with a unique and more accurate morphological description.

research product

Toward Understanding Rich Superclusters

We present a morphological study of the two richest superclusters from the 2dF Galaxy Redshift Survey (SCL126, the Sloan Great Wall, and SCL9, the Sculptor supercluster). We use Minkowski functionals, shapefinders, and galaxy group information to study the substructure of these superclusters as formed by different populations of galaxies. We compare the properties of grouped and isolated galaxies in the core region and in the outskirts of superclusters. The fourth Minkowski functional $V_3$ and the morphological signature $K_1$- $K_2$ show a crossover from low-density morphology (outskirts of supercluster) to high-density morphology (core of supercluster) at mass fraction $m_f \approx 0.7$.…

research product

Uncertainty in 2-point correlation function estimators and BAO detection in SDSS DR7

We study the uncertainty in different two-point correlation function (2PCF) estimators in currently available galaxy surveys. This is motivated by the active subject of using the baryon acoustic oscillations (BAOs) feature in the correlation function as a tool to constrain cosmological parameters, which requires a fine analysis of the statistical significance. We discuss how estimators are affected by both the uncertainty in the mean density $\bar{n}$ and the integral constraint $\frac{1}{V^2}\int_{V^2} \hat{\xi} (r) d^3r =0$ which necessarily causes a bias. We quantify both effects for currently available galaxy samples using simulated mock catalogues of the Sloan Digital Sky Survey (SDSS)…

research product

The richest superclusters : I Morphology

We study the morphology of the richest superclusters from the catalogues of superclusters of galaxies in the 2dF Galaxy Redshift Survey and compare the morphology of real superclusters with model superclusters in the Millennium Simulation. We use Minkowski functionals and shapefinders to quantify the morphology of superclusters: their sizes, shapes, and clumpiness. We generate empirical models of simple geometry to understand which morphologies correspond to the supercluster shapefinders. We show that rich superclusters have elongated, filamentary shapes with high-density clumps in their core regions. The clumpiness of superclusters is determined using the fourth Minkowski functional $V_3$.…

research product

Wavelet analysis of baryon acoustic structures in the galaxy distribution

Baryon Acoustic Oscillations (BAO) are a feature imprinted in the density field by acoustic waves travelling in the plasma of the early universe. Their fixed scale can be used as a standard ruler to study the geometry of the universe. BAO have been previously detected using correlation functions and power spectra of the galaxy distribution. In this work, we present a new method for the detection of the real-space structures associated with this feature. These baryon acoustic structures are spherical shells with a relatively small density contrast, surrounding high density central regions. We design a specific wavelet adapted to the search for shells, and exploit the physics of the process b…

research product

Uncertainty in 2-point correlation function estimators and baryon acoustic oscillation detection in galaxy surveys

Abstract We study the uncertainty in different two-point correlation function (2PCF) estimators in currently available galaxy surveys. This is motivated by the active subject of using the baryon acoustic oscillations (BAOs) feature in the correlation function as a tool to constrain cosmological parameters, which requires a fine analysis of the statistical significance. We discuss how estimators are affected by both the uncertainty in the mean density n and the integral constraint 1 V 2 ∫ V 2 ξ ˆ ( r ) d 3 r = 0 which necessarily causes a bias. We quantify both effects for currently available galaxy samples using simulated mock catalogues of the Sloan Digital Sky Survey (SDSS) following a lo…

research product

Multi-scale morphology of the galaxy distribution

Many statistical methods have been proposed in the last years for analyzing the spatial distribution of galaxies. Very few of them, however, can handle properly the border effects of complex observational sample volumes. In this paper, we first show how to calculate the Minkowski Functionals (MF) taking into account these border effects. Then we present a multiscale extension of the MF which gives us more information about how the galaxies are spatially distributed. A range of examples using Gaussian random fields illustrate the results. Finally we have applied the Multiscale Minkowski Functionals (MMF) to the 2dF Galaxy Redshift Survey data. The MMF clearly indicates an evolution of morpho…

research product