0000000000715730

AUTHOR

Claire E. Reeves

showing 2 related works from this author

Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide

2013

Volatile halogenated organic compounds containing bromine and iodine, which are naturally produced in the ocean, are involved in ozone depletion in both the troposphere and stratosphere. Three prominent compounds transporting large amounts of marine halogens into the atmosphere are bromoform (CHBr3), dibromomethane (CH2Br2) and methyl iodide (CH3I). The input of marine halogens to the stratosphere has been estimated from observations and modelling studies using low-resolution oceanic emission scenarios derived from top-down approaches. In order to improve emission inventory estimates, we calculate data-based high resolution global sea-to-air flux estimates of these compounds from surface ob…

[SDE] Environmental SciencesAtmospheric Science010504 meteorology & atmospheric sciences[SDV]Life Sciences [q-bio]Tropical Tropopause LayerWind-Speed010501 environmental sciencesAtmospheric sciences01 natural sciencesDibromomethaneTroposphereAtmospherelcsh:ChemistryStratospheric Brominechemistry.chemical_compoundFlux (metallurgy)Ocean gyrePhysical Sciences and MathematicsGas-ExchangeOzone Depletion14. Life underwaterEmission inventoryStratosphere0105 earth and related environmental sciencesgeographygeography.geographical_feature_categoryAtlantic-OceanLife SciencesOzone depletionlcsh:QC1-999Halogenated Organic-Compounds[SDV] Life Sciences [q-bio]chemistrylcsh:QD1-99913. Climate actionMarine Boundary-LayerClimatologyPhytoplankton Cultures[SDE]Environmental SciencesPhotochemical Productionlcsh:Physics
researchProduct

Influence of clouds on the spectral actinic flux density in the lower troposphere (INSPECTRO): overview of the field campaigns

2008

Ultraviolet radiation is the key factor driving tropospheric photochemistry. It is strongly modulated by clouds and aerosols. A quantitative understanding of the radiation field and its effect on photochemistry is thus only possible with a detailed knowledge of the interaction between clouds and radiation. The overall objective of the project INSPECTRO was the characterization of the three-dimensional actinic radiation field under cloudy conditions. This was achieved during two measurement campaigns in Norfolk (East Anglia, UK) and Lower Bavaria (Germany) combining space-based, aircraft and ground-based measurements as well as simulations with the one-dimensional radiation transfer model UV…

Atmospheric ScienceAIRBORNEMODEL INTERCOMPARISON IPMMI010504 meteorology & atmospheric sciencesPHOTOCHEMICAL ACTIVITYmedia_common.quotation_subjectFluxPHOTOLYSIS FREQUENCY-MEASUREMENTRadiationAtmospheric sciences01 natural sciencesBROKEN CLOUDlaw.inventionTroposphere010309 opticslcsh:Chemistrylaw0103 physical sciencesddc:550MEASUREMENTSZenithABSORPTION CROSS-SECTIONSmedia_commonRemote sensingMonochromator0105 earth and related environmental sciences[SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereVERTICAL-DISTRIBUTIONStray lightlcsh:QC1-999UVJSpectroradiometerlcsh:QD1-999Sky13. Climate actionQUANTUM YIELDSEnvironmental science/dk/atira/pure/subjectarea/asjc/1900/1902lcsh:PhysicsAEROSOL EXTINCTION
researchProduct