0000000000718004
AUTHOR
Gozyal G. Saidullaeva
Form factors for semileptonic, nonleptonic, and rareB(Bs)meson decays
We provide new values for the model parameters of the covariant constituent quark model (with built–in infrared confinement) in the meson sector by a fit to the leptonic decay constants and a number of electromagnetic decays. We then evaluate, in a parameter-free way, the form factors of the B(Bs) ! P(V ) transitions in the full kinematical region of momentum transfer. As an application of our results we calculate the widths of the nonleptonic Bs-decays into Ds D + , D � s D + s +D s D � + s
One-photon decay of the tetraquark stateX(3872)→γ+J/ψin a relativistic constituent quark model with infrared confinement
We further explore the consequences of treating the $X(3872)$ meson as a tetraquark bound state by analyzing its one-photon decay $X\ensuremath{\rightarrow}\ensuremath{\gamma}+J/\ensuremath{\psi}$ in the framework of our approach developed in previous papers which incorporates quark confinement in an effective way. To introduce electromagnetism we gauge a nonlocal effective Lagrangian describing the interaction of the $X(3872)$ meson with its four constituent quarks by using the $P$-exponential path-independent formalism. We calculate the matrix element of the transition $X\ensuremath{\rightarrow}\ensuremath{\gamma}+J/\ensuremath{\psi}$ and prove its gauge invariance. We evaluate the $X\ens…