0000000000718069

AUTHOR

Sriparna Saha

Exploring Multi-Objective Optimization for Multi-Label Classifier Ensembles

Multi-label classification deals with the task of predicting multiple class labels for a given sample. Several performance metrics are designed in the literature to measure the quality of any multi-label classification technique. In general existing multi-label classification approaches focus on optimizing only a single performance measure. The current work builds on the hypothesis that a weighted ensemble of multiple multi-label classifiers will lead to obtain improved results. The appropriate weight combinations for combining the outputs of multiple classifiers can be selected after simultaneously optimizing different multi-label classification metrics like micro F1, hamming loss, 0/1 los…

research product

Exploring Multiobjective Optimization for Multiview Clustering

We present a new multiview clustering approach based on multiobjective optimization. In contrast to existing clustering algorithms based on multiobjective optimization, it is generally applicable to data represented by two or more views and does not require specifying the number of clusters a priori . The approach builds upon the search capability of a multiobjective simulated annealing based technique, AMOSA, as the underlying optimization technique. In the first version of the proposed approach, an internal cluster validity index is used to assess the quality of different partitionings obtained using different views. A new way of checking the compatibility of these different partitioning…

research product