0000000000718481
AUTHOR
Clive F. Baillie
Spin Glasses on Thin Graphs
In a recent paper we found strong evidence from simulations that the Isingantiferromagnet on ``thin'' random graphs - Feynman diagrams - displayed amean-field spin glass transition. The intrinsic interest of considering such random graphs is that they give mean field results without long range interactions or the drawbacks, arising from boundary problems, of the Bethe lattice. In this paper we reprise the saddle point calculations for the Ising and Potts ferromagnet, antiferromagnet and spin glass on Feynman diagrams. We use standard results from bifurcation theory that enable us to treat an arbitrary number of replicas and any quenched bond distribution. We note the agreement between the f…
Softening Transitions with Quenched 2D Gravity
We perform extensive Monte Carlo simulations of the 10-state Potts model on quenched two-dimensional $\Phi^3$ gravity graphs to study the effect of quenched connectivity disorder on the phase transition, which is strongly first order on regular lattices. The numerical data provides strong evidence that, due to the quenched randomness, the discontinuous first-order phase transition of the pure model is softened to a continuous transition.