0000000000718483
AUTHOR
Sergio Esposito
Experimental and Numerical Analysis of Microstructure Evolution during Linear Friction Welding of Ti6Al4V
Abstract Linear Friction Welding (LFW) is a solid state welding process used to joint bulk components. In the paper, an experimental and numerical study on LFW of Ti6Al4V titanium alloy is presented. A laboratory designed LFW machine has been used to weld the specimens with different contact pressure and oscillation frequency. The joint microstructure has been experimentally observed with SEM and EDS. A dedicated numerical model, able to predict temperature, strain and strain rate distribution as well as the phase volume fraction evolution, has been utilized to predict the final microstructure in the welded parts. It was found that complete transformation of the alpha phase into beta phase …
Infrared thermography for monitoring heat generation in a linear friction welding process of Ti6Al4V alloy
Abstract The increasing use of titanium alloys in a wider range of applications requires the development of new techniques and processes capable to decrease production costs and manufacturing times. In this regard welding and other joining techniques play an important role. Today, solid state friction joining processes, such as friction stir welding, friction spot welding, inertia friction welding, continuous-drive friction welding and linear friction welding (LFW), represent promising methods for part manufacturing. They allow for joining at temperature essentially below the melting point of the base materials being joined, without the addition of filler metal. However, the knowledge of te…