0000000000718510
AUTHOR
Gregory P. Carman
Effective strain manipulation of the antiferromagnetic state of polycrystalline NiO
As a candidate material for applications such as magnetic memory, polycrystalline antiferromagnets offer the same robustness to external magnetic fields, THz spin dynamics, and lack of stray field as their single crystalline counterparts, but without the limitation of epitaxial growth and lattice matched substrates. Here, we first report the detection of the average Neel vector orientiation in polycrystalline NiO via spin Hall magnetoresistance (SMR). Secondly, by applying strain through a piezo-electric substrate, we reduce the critical magnetic field required to reach a saturation of the SMR signal, indicating a change of the anisotropy. Our results are consistent with polycrystalline NiO…
Electrically Driven Magnetic Domain Wall Rotation in Multiferroic Heterostructures to Manipulate Suspended On-Chip Magnetic Particles
In this work, we experimentally demonstrate deterministic electrically driven, strain-mediated domain wall (DW) rotation in ferromagnetic Ni rings fabricated on piezoelectric [Pb(Mg1/3Nb2/3)O3]0.66-[PbTiO3]0.34 (PMN-PT) substrates. While simultaneously imaging the Ni rings with X-ray magnetic circular dichroism photoemission electron microscopy, an electric field is applied across the PMN-PT substrate that induces strain in the ring structures, driving DW rotation around the ring toward the dominant PMN-PT strain axis by the inverse magnetostriction effect. The DW rotation we observe is analytically predicted using a fully coupled micromagnetic/elastodynamic multiphysics simulation, which v…
Magnetic Anisotropy Engineering in Thin Film Ni Nanostructures by Magnetoelastic Coupling
ELECTRICAL-FIELD CONTROL OF MAGNETISM MEDIATED BY STRAIN IN Ni NANOSTRUCTURES FABRICATED ON PRE-POLED PMN–PT (011)
We investigate the effects of piezoelectric-generated strain on the magnetization configuration of Ni nanostructures fabricated on pre-poled piezoelectric (011) [ Pb ( Mg 0.33 Nb 0.66) O 3]0.68–[ PbTiO 3]0.32 (PMN–PT) by high resolution X-ray microscopy. We observe a strong uniaxial anisotropy in the Ni nanostructures, due to the relaxation of the substrate following the deposition of the Ni . The anisotropy can be modified by the application of an electric field to the piezoelectric substrate (thus generating a piezoelectric strain in the system) through the magneto-elastic effect. By applying an electric field to the PMN–PT, the magnetization configuration in nanostructured Ni squares an…