6533b82dfe1ef96bd1291d43

RESEARCH PRODUCT

Effective strain manipulation of the antiferromagnetic state of polycrystalline NiO

Anthony BarraMathias KläuiMathias KläuiJoseph D. SchneiderPaymon ShiraziLorenzo BaldratiAndrew RossAndres C. ChavezRomain LebrunRomain LebrunOlena GomonayJairo SinovaGregory P. CarmanQianchang Wang

subject

010302 applied physicsCondensed Matter - Materials ScienceMaterials sciencePhysics and Astronomy (miscellaneous)Condensed matter physicsMagnetoresistanceMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesMagnetostriction02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMagnetic fieldCondensed Matter::Materials Science0103 physical sciencesAntiferromagnetismCondensed Matter::Strongly Correlated ElectronsCrystallite0210 nano-technologyAnisotropySaturation (magnetic)Spin-½

description

As a candidate material for applications such as magnetic memory, polycrystalline antiferromagnets offer the same robustness to external magnetic fields, THz spin dynamics, and lack of stray field as their single crystalline counterparts, but without the limitation of epitaxial growth and lattice matched substrates. Here, we first report the detection of the average Neel vector orientiation in polycrystalline NiO via spin Hall magnetoresistance (SMR). Secondly, by applying strain through a piezo-electric substrate, we reduce the critical magnetic field required to reach a saturation of the SMR signal, indicating a change of the anisotropy. Our results are consistent with polycrystalline NiO exhibiting a positive sign of the in-plane magnetostriction. This method of anisotropy-tuning offers an energy efficient, on-chip alternative to manipulate a polycrystalline antiferromagnets magnetic state.

https://doi.org/10.1063/5.0046255