Search results for "Antiferromagnetism"

showing 10 items of 471 documents

Spin Hall magnetoresistance in antiferromagnetic insulators

2020

Antiferromagnetic materials promise improved performance for spintronic applications, as they are robust against external magnetic field perturbations and allow for faster magnetization dynamics compared to ferromagnets. The direct observation of the antiferromagnetic state, however, is challenging due to the absence of a macroscopic magnetization. Here, we show that the spin Hall magnetoresistance (SMR) is a versatile tool to probe the antiferromagnetic spin structure via simple electrical transport experiments by investigating the easy-plane antiferromagnetic insulators $\alpha$-Fe2O3 (hematite) and NiO in bilayer heterostructures with a Pt heavy metal top electrode. While rotating an ext…

010302 applied physicsCondensed Matter - Materials ScienceMagnetization dynamicsMaterials scienceMagnetoresistanceSpintronicsCondensed matter physicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMagnetic fieldMagnetizationFerromagnetismFerrimagnetism0103 physical sciencesAntiferromagnetismCondensed Matter::Strongly Correlated Electrons0210 nano-technologyJournal of Applied Physics
researchProduct

An insulating doped antiferromagnet with low magnetic symmetry as a room temperature spin conduit

2020

We report room temperature long-distance spin transport of magnons in antiferromagnetic thin film hematite doped with Zn. The additional dopants significantly alter the magnetic anisotropies, resulting in a complex equilibrium spin structure that is capable of efficiently transporting spin angular momentum at room temperature without the need for a well-defined, pure easy-axis or easy-plane anisotropy. We find intrinsic magnon spin-diffusion lengths of up to 1.5 {\mu}m, and magnetic domain governed decay lengths of 175 nm for the low frequency magnons, through electrical transport measurements demonstrating that the introduction of non-magnetic dopants does not strongly reduce the transport…

010302 applied physicsCondensed Matter - Materials ScienceMaterials scienceCondensed Matter - Mesoscale and Nanoscale PhysicsPhysics and Astronomy (miscellaneous)Magnetic domainCondensed matter physicsMagnetoresistanceMagnonMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technologySpin structure021001 nanoscience & nanotechnology01 natural sciencesCondensed Matter::Materials ScienceMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesMagnetic dampingAntiferromagnetismCondensed Matter::Strongly Correlated Electrons0210 nano-technologyAnisotropySpin (physics)Applied Physics Letters
researchProduct

Large Zero-Field Cooled Exchange-Bias in BulkMn2PtGa

2013

We report a large exchange-bias (EB) effect after zero-field cooling the new tetragonal Heusler compound Mn2PtGa from the paramagnetic state. The first-principle calculation and the magnetic measurements reveal that Mn2PtGa orders ferrimagnetically with some ferromagnetic (FM) inclusions. We show that ferrimagnetic (FI) ordering is essential to isothermally induce the exchange anisotropy needed for the zero-field cooled (ZFC) EB during the virgin magnetization process. The complex magnetic behavior at low temperatures is characterized by the coexistence of a field induced irreversible magnetic behavior and a spin-glass-like phase. The field induced irreversibility originates from an unusual…

010302 applied physicsCondensed Matter - Materials ScienceMaterials scienceMagnetic domainCondensed matter physicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technologyengineering.material021001 nanoscience & nanotechnologyHeusler compound01 natural sciencesCondensed Matter::Materials ScienceParamagnetismMagnetic anisotropyMagnetizationExchange biasFerrimagnetism0103 physical sciencesengineeringAntiferromagnetismCondensed Matter::Strongly Correlated Electrons0210 nano-technologyPhysical Review Letters
researchProduct

Effective strain manipulation of the antiferromagnetic state of polycrystalline NiO

2021

As a candidate material for applications such as magnetic memory, polycrystalline antiferromagnets offer the same robustness to external magnetic fields, THz spin dynamics, and lack of stray field as their single crystalline counterparts, but without the limitation of epitaxial growth and lattice matched substrates. Here, we first report the detection of the average Neel vector orientiation in polycrystalline NiO via spin Hall magnetoresistance (SMR). Secondly, by applying strain through a piezo-electric substrate, we reduce the critical magnetic field required to reach a saturation of the SMR signal, indicating a change of the anisotropy. Our results are consistent with polycrystalline NiO…

010302 applied physicsCondensed Matter - Materials ScienceMaterials sciencePhysics and Astronomy (miscellaneous)Condensed matter physicsMagnetoresistanceMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesMagnetostriction02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMagnetic fieldCondensed Matter::Materials Science0103 physical sciencesAntiferromagnetismCondensed Matter::Strongly Correlated ElectronsCrystallite0210 nano-technologyAnisotropySaturation (magnetic)Spin-½Applied Physics Letters
researchProduct

45° sign switching of effective exchange bias due to competing anisotropies in fully epitaxial Co3FeN/MnN bilayers

2017

We report an unusual angular-dependent exchange bias effect in ferromagnet/antiferromagnet bilayers, where both ferromagnet and antiferromagnet are epitaxially grown. Numerical model calculations predict an approximately 45° period for the sign switching of the exchange-bias field, depending on the ratio between magnetocrystalline anisotropy and exchange-coupling constant. The switching of the sign is indicative of a competition between a fourfold magnetocrystalline anisotropy of the ferromagnet and a unidirectional anisotropy field of the exchange coupling. This predicted unusual angular-dependent exchange bias and its magnetization switching process are confirmed by measurements on fully …

010302 applied physicsCoupling constantMaterials scienceKerr effectCondensed matter physicsCondensed Matter PhysicsMagnetocrystalline anisotropy01 natural sciencesCondensed Matter::Materials ScienceCrystallographyMagnetizationExchange biasFerromagnetism0103 physical sciencesAntiferromagnetismGeneral Materials Science010306 general physicsAnisotropyJournal of Physics: Condensed Matter
researchProduct

Determination of fine magnetic structure of magnetic multilayer with quasi antiferromagnetic layer by using polarized neutron reflectivity analysis

2020

We carried out polarized neutron reflectivity (PNR) analysis to determine the fine magnetic structure of magnetic multilayers with quasi-antiferromagnetic (quasi-AFM) layers realized by 90-deg coupling using two Co90Fe10 layers, and quantitatively evaluated the magnetization of quasi-AFM layers. Two types of samples with different buffer layers, Ru buffer and a NiFeCr buffer, were investigated and the average angles between the respective magnetization of the two Co90Fe10 layers were estimated to be +/− 39 degrees and +/− 53 degrees. In addition, less roughness was found in the NiFeCr buffer sample resulting stronger 90-deg coupling. A perfect quasi-AFM is expected to be realized by a flat …

010302 applied physicsCouplingMaterials scienceCondensed matter physicsMagnetic structure530 PhysicsGeneral Physics and Astronomy02 engineering and technologySurface finish021001 nanoscience & nanotechnology530 Physik01 natural scienceslcsh:QC1-999Buffer (optical fiber)Magnetization0103 physical sciencesAntiferromagnetismNeutron0210 nano-technologyLayer (electronics)lcsh:Physics
researchProduct

Quasi-antiferromagnetic multilayer stacks with 90 degree coupling mediated by thin Fe oxide spacers

2019

We fabricated quasiantiferromagnetic (quasi-AFM) layers with alternating antiparallel magnetization in the neighboring domains via 90° magnetic coupling through an Fe-O layer. We investigated the magnetic properties and the relationship between the magnetic domain size and the 90° magnetic coupling via experiments and calculations. Two types of samples with a Ru buffer and a (Ni80Fe20)Cr40 buffer were prepared, and we found that with the NiFeCr buffer, the sample has a flatter Fe-O layer, leading to stronger 90° magnetic coupling and a smaller domain size compared with the Ru buffer sample. This trend is well explained by the bilinear and biquadratic coupling coefficients, A12 and B12, in L…

010302 applied physicsMaterials scienceCondensed matter physicsMagnetic domainAtomic force microscopy530 PhysicsOxideGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology530 Physik01 natural sciencesInductive couplingBuffer (optical fiber)Magnetizationchemistry.chemical_compoundchemistry0103 physical sciencesAntiferromagnetism0210 nano-technologyAntiparallel (electronics)
researchProduct

Antiferromagnetic NiO thickness dependent sign of the spin Hall magnetoresistance in γ-Fe 2 O 3 /NiO/Pt epitaxial stacks

2019

We study the spin Hall magnetoresistance (SMR) in epitaxial γ–Fe2O3/NiO(001)/Pt stacks, as a function of temperature and thickness of the antiferromagnetic insulating NiO layer. Upon increasing the thickness of NiO from 0 nm to 10 nm, we detect a sign change of the SMR in the temperature range between 10 K and 280 K. This temperature dependence of the SMR in our stacks is different compared to that of previously studied yttrium iron garnet/NiO/Pt, as we do not find any peak or sign change as a function of temperature. We explain our data by a combination of spin current reflection from both the NiO/Pt and γ-Fe2O3/NiO interfaces and the thickness-dependent exchange coupling mode between the …

010302 applied physicsMaterials sciencePhysics and Astronomy (miscellaneous)MagnetoresistanceCondensed matter physicsNon-blocking I/OYttrium iron garnet02 engineering and technologyAtmospheric temperature range021001 nanoscience & nanotechnologyEpitaxy01 natural scienceschemistry.chemical_compoundReflection (mathematics)chemistry0103 physical sciencesAntiferromagnetism0210 nano-technologySpin (physics)Applied Physics Letters
researchProduct

Effect of nanostructure layout on spin pumping phenomena in antiferromagnet/nonmagnetic metal/ferromagnet multilayered stacks

2017

In this work we focus on magnetic relaxation in Mn80Ir20(12 nm)/Cu(6 nm)/Py(dF) antiferromagnet/Cu/ferromagnet (AFM/Cu/FM) multilayers with different thickness of the ferromagnetic permalloy layer. An effective FM-AFM interaction mediated via the conduction electrons in the nonmagnetic Cu spacer – the spin-pumping effect – is detected as an increase in the linewidth of the ferromagnetic resonance (FMR) spectra and a shift of the resonant magnetic field. We further find experimentally that the spin-pumping-induced contribution to the linewidth is inversely proportional to the thickness of the Py layer. We show that this thickness dependence likely originates from the dissipative dynamics of …

010302 applied physicsPermalloySpin pumpingMaterials scienceCondensed matter physicsSpintronicsGeneral Physics and Astronomy01 natural sciencesFerromagnetic resonancelcsh:QC1-999Magnetic fieldCondensed Matter::Materials ScienceLaser linewidthFerromagnetism0103 physical sciencesAntiferromagnetismCondensed Matter::Strongly Correlated Electrons010306 general physicslcsh:PhysicsAIP Advances
researchProduct

Two bimetallic layered materials with “Cu4Fe3” defective cubane units: syntheses, structures and magnetic properties of {[CuII(tn)]2[FeII(CN)6]}3·[Na…

2005

Abstract Reactions of the [Fe III (CN) 6 ] 3− anion with the [Cu II (tn)] 2+ ion (tn = 1,3-diaminopropane) afford the compounds {[Cu II (tn)] 2 [Fe II (CN) 6 ]}3·[Na 3 Fe III (CN) 6 ]·12H 2 O (1) and {[Cu n (tn)] 2 [Fe II (CN) 6 ]}·KCl·5H 2 O (2). Despite the differences concerning their asymmetric units, both structures present strong similar features: in both structures, the Cu(II) ion presents a square-base pyramidal CuN 5 environment and each [Fe II (CN) 6 ] 4− anion is linked to six Cu(II) ions through its six N atoms leading to infinite [Cu II (tn)] 2 [Fe II (CN) 6 ] layers which can be viewed as 2-D layered arrangement generated by the defective cubane units Cu 4 Fe 3 involving Fe-CN…

010405 organic chemistryChemistryCoordination polymerMechanical EngineeringInorganic chemistryMetals and AlloysCrystal structure010402 general chemistryCondensed Matter Physics01 natural sciences0104 chemical sciencesElectronic Optical and Magnetic MaterialsParamagnetismchemistry.chemical_compoundCrystallographyTransition metalMechanics of MaterialsCubaneMaterials ChemistryMoleculeAntiferromagnetismBimetallic stripSynthetic Metals
researchProduct