0000000000718711
AUTHOR
Ghasem Naeimi
Coherence and entanglement dynamics of vibrating qubits
We investigate the dynamics of coherence and entanglement of vibrating qubits. Firstly, we consider a single trapped ion qubit inside a perfect cavity and successively we use it to construct a bipartite system made of two of such subsystems, taken identical and noninteracting. As a general result, we find that qubit vibration can lead to prolonging initial coherence in both single-qubit and two-qubit system. However, despite of this coherence preservation, we show that the decay of the entanglement between the two qubits is sped up by the vibrational motion of the qubits. Furthermore, we highlight how the dynamics of photon-phonon correlations between cavity mode and vibrational mode, which…
Quantum enhancement of qutrit dynamics through driving field and photonic-band-gap crystal
A comparative study of a qutrit (three-level atomic system) coupled to a classical field in a typical Markovian reservoir (free space) and in a photonic band-gap (PBG) crystal is carried out. The aim of the study is to assess the collective impact of structured environment and classical control of the system on the dynamics of quantum coherence, non-Markovianity, and estimation of parameters which are initially encoded in the atomic state. We show that the constructive interplay of PBG material as a medium and classical driving field as a part of system results in a significant enhancement of all the quantum traits of interest, compared to the case when the driven qutrit is in a Markovian e…