0000000000718909
AUTHOR
Marzio De Biasi
Unary Languages Recognized by Two-Way One-Counter Automata
A two-way deterministic finite state automaton with one counter (2D1CA) is a fundamental computational model that has been examined in many different aspects since sixties, but we know little about its power in the case of unary languages. Up to our knowledge, the only known unary nonregular languages recognized by 2D1CAs are those formed by strings having exponential length, where the exponents form some trivial unary regular language. In this paper, we present some non-trivial subsets of these languages. By using the input head as a second counter, we present simulations of two-way deterministic finite automata with linearly bounded counters and linear–space Turing machines. We also show …
Unary languages recognized by two-way one-counter automata
A two-way deterministic finite state automaton with one counter (2D1CA) is a fundamental computational model that has been examined in many different aspects since sixties, but we know little about its power in the case of unary languages. Up to our knowledge, the only known unary nonregular languages recognized by 2D1CAs are those formed by strings having exponential length, where the exponents form some trivial unary regular language. In this paper, we present some non-trivial subsets of these languages. By using the input head as a second counter, we present simulations of two-way deterministic finite automata with linearly bounded counters and linear--space Turing machines. We also show…